首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Journal of biomechanics》2014,47(16):3882-3890
Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms.  相似文献   

3.
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.  相似文献   

4.
This study investigates the hemodynamic changes to various types of coronary stenosis in the left coronary artery bifurcation, based on a patient-specific analysis. Twenty two patients with left coronary artery disease were included in this study. All stenoses involving the left coronary artery bifurcation were classified into four types, according to their locations: A) left circumflex (LCx) and left anterior descending (LAD), B) LCx only, C) left main stem only, and D) LAD only. Computational fluid dynamics (CFD) was performed to analyze the flow and wall shear stress (WSS) changes in all reconstructed left coronary geometries. Our results showed that the flow velocity and WSS were significantly increased at stenotic locations. High WSS was found at >70% lumen stenosis, which ranged from 2.5 Pa to 3.5 Pa. This study demonstrates that in patients with more than 50% stenosis in the left coronary artery bifurcation, WSS plays an important role in providing information about the extent of coronary atherosclerosis in the left coronary artery branch.  相似文献   

5.
Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.  相似文献   

6.
Accurate assessment of wall shear stress (WSS) is vital for studies on the pathogenesis of atherosclerosis. WSS distributions can be obtained by computational fluid dynamics (CFD) using patient-specific geometries and flow measurements. If patient-specific flow measurements are unavailable, in- and outflow have to be estimated, for instance by using Murray’s Law. It is currently unknown to what extent this law holds for carotid bifurcations, especially in cases where stenoses are involved. We performed flow measurements in the carotid bifurcation using phase-contrast MRI in patients with varying degrees of stenosis. An empirical relation between outflow and degree of area stenosis was determined and the outflow measurements were compared to estimations based on Murray’s Law. Furthermore, the influence of outflow conditions on the WSS distribution was studied.For bifurcations with an area stenosis smaller than 65%, the outflow ratio of the internal carotid artery (ICA) to the common carotid artery (CCA) was 0.62±0.12 while the outflow ratio of the external carotid artery (ECA) was 0.35±0.13. If the area stenosis was larger than 65%, the flow to the ICA decreased linearly to zero at 100% area stenosis. The empirical relation fitted the flow data well (R2=0.69), whereas Murray’s Law overestimated the flow to the ICA substantially for larger stenosis, resulting in an overestimation of the WSS. If patient-specific flow measurements of the carotid bifurcation are unavailable, estimation of the outflow ratio by the presented empirical relation will result in a good approximation of calculated WSS using CFD.  相似文献   

7.
Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular system. Results: The flow rate of native coronary arteries and grafts are all calculated and illustrated in this paper. No significant difference of the native coronary arteries flow and graft flow exists between two surgical procedures. The wall shear stress (WSS) and streamline were also depicted. The graft WSS of sequential graft is 19.1% higher than Y-type graft. While flow separation appears at the bifurcation of Y-type graft. Conclusion: The short-term outcomes of sequential graft and Y-type graft are almost the same. But it can be found from the hemodynamics factors that the longterm patency of the sequential graft is better.  相似文献   

8.
The aim of our study is to investigate with computational fluid dynamics (CFD) whether different arterial anastomotic geometries result in a different hemodynamics at the arterial (AA) and venous anastomosis (VA) of hemodialysis vascular access grafts. We have studied a 6mm graft (CD) and a 4-7 mm graft (TG). A validated three-dimensional CFD model is developed to simulate flow in the two graft types. Only the arterial anastomosis (AA) geometry differs. The boundary conditions applied are a periodic velocity signal at the arterial inlet and a periodic pressure wave at the venous outlet. Flow rate is set to 1,000 ml/min. The time dependent Navier-Stokes equations are solved. Wall shear stress (WSS), wall shear stress gradient (WSSG) and pressure gradient (PG) are calculated. Anastomotic flow is asymmetric although the anastomosis geometry is symmetric. The hemodynamic parameters, WSS, WSSG and PG, values at the suture line of the arterial anastomosis of the TG are at least twice as much as in the CD. Comparing the parameters at the two AA indicate that little flow rate increase introduces the risk of hemolysis in the TG whereas the CD is completely free of hemolysis. The hemodynamic parameter values at the venous anastomosis of the CD are 24 till 35% higher compared to the values of the TG. WSS values (> 3 Pa) in the VA are in the critical range for stenosis development in both graft geometries. The zones where the parameters reach extreme values correspond to the locations where intimal hyperplasia formation is reported in literature. In all anastomoses, the hemodynamic parameter levels are in the range where leucocytes and platelets get activated. Our simulations confirm clinical results where TG did not show a better outcome when compared to the CD.  相似文献   

9.
Coronary arterial stenoses, particularly serial stenoses in a single branch, are responsible for complex hemodynamic properties of the coronary arterial trees, and the uncertain prognosis of invasive intervention. Critical information of the blood flow redistribution in the stenotic arterial segments is required for the adequate treatment planning. Therefore, in this study, an image based non-invasive functional assessment is performed to investigate the hemodynamic significances of serial stenoses. Twenty patient-specific coronary arterial trees with different combinations of stenoses were reconstructed from the computer tomography angiography for the evaluation of the hemodynamics. Our results showed that the computed FFR based on CTA images (FFRCT) pullback curves with wall shear stress (WSS) distribution could provide more effectively examine the physiological significance of the locations of the segmental narrowing and the curvature of the coronary arterial segments. The paper thus provides the diagnostic efficacy of FFRCT pullback curve for noninvasive quantification of the hemodynamics of stenotic coronary arteries with serial lesions, compared to the gold standard invasive FFR, to provide a reliable physiological assessment of significant amount of coronary artery stenosis. Further, we were also able to demonstrate the potential of carrying out virtual revascularization, to enable more precise PCI procedures and improve their outcomes.  相似文献   

10.
Computational fluid dynamics (CFD) simulations can be employed to gain a better understanding of hemodynamics in cerebral aneurysms and improve diagnosis and treatment. However, introduction of CFD techniques into clinical practice would require faster simulation times. The aim of this study was to evaluate the use of computationally inexpensive steady flow simulations to approximate the aneurysm's wall shear stress (WSS) field. Two experiments were conducted. Experiment 1 compared for two cases the time-averaged (TA), peak systole (PS) and end diastole (ED) WSS field between steady and pulsatile flow simulations. The flow rate waveform imposed at the inlet was varied to account for variations in heart rate, pulsatility index, and TA flow rate. Consistently across all flow rate waveforms, steady flow simulations accurately approximated the TA, but not the PS and ED, WSS field. Following up on experiment 1, experiment 2 tested the result for the TA WSS field in a larger population of 20 cases covering a wide range of aneurysm volumes and shapes. Steady flow simulations approximated the space-averaged WSS with a mean error of 4.3%. WSS fields were locally compared by calculating the absolute error per node of the surface mesh. The coefficient of variation of the root-mean-square error over these nodes was on average 7.1%. In conclusion, steady flow simulations can accurately approximate the TA WSS field of an aneurysm. The fast computation time of 6 min per simulation (on 64 processors) could help facilitate the introduction of CFD into clinical practice.  相似文献   

11.
Bicuspid aortic valve (BAV) aortopathy remains of difficult clinical management due to its heterogeneity and further assessment of related aortic hemodynamics is necessary. The aim of this study was to assess systolic hemodynamic indexes and wall stresses in patients with diverse BAV phenotypes and dilated ascending aortas. The aortic geometry was reconstructed from patient-specific images while the aortic valve was generated based on patient-specific measurements. Physiologic material properties and boundary conditions were applied and fully coupled fluid-structure interaction (FSI) analysis were conducted. Our dilated aortic models were characterized by the presence of abnormal hemodynamics with elevated degrees of flow skewness and eccentricity, regardless of BAV morphotype. Retrograde flow was also present. Both features, predicted by flow angle and flow reversal ratios, were consistently higher than those reported for non-dilated aortas. Right-handed helical flow was present, as well as elevated wall shear stress (WSS) on the outer ascending aortic wall. Our results suggest that the abnormal flow associated with BAV may play a role in aortic enlargement and progress it further on already dilated aortas.  相似文献   

12.
Arteriovenous fistula (AVF) is the endorsed method of vascular access for hemodialysis in end-stage renal disease (ESRD). However, more than 60% of AVF fail to mature for hemodialysis. Intimal hyperplasia leads to stenosis is the primary cause of fistula failure. Wall shear stress (WSS) is one of the important parameters that enact a crucial role in building of intimal hyperplasia. The prime purpose of this research work is to investigate the effect of anastomosis angle on WSS, pressure drop, venous outflow rate and identify the optimal angle of anastomosis of AVF, so that it helps to standardize the surgical technique. In this research work, three-dimensional idealized geometries of end-to-side type AVF for the four different angles of anastomosis are created. Numerical simulation performed using incompressible, Newtonian blood to calculate the WSS, blood flow rate at the distal end of the vein and pressure drop across the anastomosis for the three arterial inflow 350, 500 and 900 ml/min. For all three arterial inflow, the WSS is high at 75° compared to other angles and it is less at 60°. The WSS at 45° and 90° are moderate. The venous outflow is increasing with the increase in arterial inflow condition for all anastomosis angles except for 45°. The outflow rate at distal venous end is highest, 344.85 ml/min at 45° for 500 ml/min arterial inflow. Pressure drop high at 45° and lowest at 90°. The intensity of disturbed flow and recirculation zone was observed at the area of anastomosis and it is high at 75°. From the results and observations, it can be concluded that 45° angle is the best choice for the anastomosis of AVF. This finding will standardize the surgical technique and subsequently, it will help to mature the AVF early and for a long time.  相似文献   

13.
Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.  相似文献   

14.
Haemodynamic factors, in particular wall shear stresses (WSSs) may have significant impact on growth and rupture of cerebral aneurysms. Without a means to measure WSS reliably in vivo, computational fluid dynamic (CFD) simulations are frequently employed to visualise and quantify blood flow from patient-specific computational models. With increasing interest in integrating these CFD simulations into pretreatment planning, a better understanding of the validity of the calculations in respect to computation parameters such as volume element type, mesh size and mesh composition is needed. In this study, CFD results for the two most common aneurysm types (saccular and terminal) are compared for polyhedral- vs. tetrahedral-based meshes and discussed regarding future clinical applications. For this purpose, a set of models were constructed for each aneurysm with spatially varying surface and volume mesh configurations (mesh size range: 5119-258, 481 volume elements). WSS distribution on the model wall and point-based velocity measurements were compared for each configuration model. Our results indicate a benefit of polyhedral meshes in respect to convergence speed and more homogeneous WSS patterns. Computational variations of WSS values and blood velocities are between 0.84 and 6.3% from the most simple mesh (tetrahedral elements only) and the most advanced mesh design investigated (polyhedral mesh with boundary layer).  相似文献   

15.
BACKGROUND: Patient-specific computational fluid dynamics (CFD) models derived from medical images often require simplifying assumptions to render the simulations conceptually or computationally tractable. In this study, we investigated the sensitivity of image-based CFD models of the carotid bifurcation to assumptions regarding the blood rheology. METHOD OF APPROACH: CFD simulations of three different patient-specific models were carried out assuming: a reference high-shear Newtonian viscosity, two different non-Newtonian (shear-thinning) rheology models, and Newtonian viscosities based on characteristic shear rates or, equivalently, assumed hematocrits. Sensitivity of wall shear stress (WSS) and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry, and to assumptions regarding the inlet boundary conditions. RESULTS: Sensitivity of WSS to the various rheological assumptions was roughly 1.0 dyn/cm(2) or 8%, nearly seven times less than that due to geometric uncertainty (6.7 dyn/cm(2) or 47%), and on the order of that due to inlet boundary condition assumptions. Similar trends were observed regarding OSI sensitivity. Rescaling the Newtonian viscosity based on time-averaged inlet shear rate served to approximate reasonably, if overestimate slightly, non-Newtonian behavior. CONCLUSIONS: For image-based CFD simulations of the normal carotid bifurcation, the assumption of constant viscosity at a nominal hematocrit is reasonable in light of currently available levels of geometric precision, thus serving to obviate the need to acquire patient-specific rheological data.  相似文献   

16.
In composite arterial coronary grafts (CACGs), transport phenomena and geometry may considerably alter blood flow dynamics. CACGs aim at revascularizing pathological arteries according to the human anatomy. However, the exact mechanisms causing the failure of coronary bypass grafting are not yet well elucidated. In the present study, computational fluid dynamics (CFD) techniques are applied for the simulation of multi-branched CACGs under physiologically realistic inflow waveforms. The numerical solution is obtained by a finite-volume method formulated in non-orthogonal, curvilinear coordinates and a multi-grid approach. The geometrical models, consisting of idealized and rigid vessels, include the typical T- and a rather new pi-graft configuration. The stenotic effect is also investigated by comparing computational results for three different degrees of area constriction, namely 25%, 50% and 75%, as well as the case without stenosis. Different grafting distances and various inflow rate ratios are imposed, to give an insight into haemodynamical alterations of CACGs and to study the process of restenosis. The results focus on the interaction between the grafts and coronary flows in terms of spatial and temporal variations of velocity and wall shear stress (WSS) distribution. Prominent variations among the different geometries, concerning the velocity profiles and secondary flow motion, are shown. Moreover, the residual flow emerging from different degrees of area constriction shows that low and oscillating shear stresses may arise for even moderate stenotic fields.  相似文献   

17.
Coronary stent design affects the spatial distribution of wall shear stress (WSS), which can influence the progression of endothelialization, neointimal hyperplasia, and restenosis. Previous computational fluid dynamics (CFD) studies have only examined a small number of possible geometries to identify stent designs that reduce alterations in near-wall hemodynamics. Based on a previously described framework for optimizing cardiovascular geometries, we developed a methodology that couples CFD and three-dimensional shape-optimization for use in stent design. The optimization procedure was fully-automated, such that solid model construction, anisotropic mesh generation, CFD simulation, and WSS quantification did not require user intervention. We applied the method to determine the optimal number of circumferentially repeating stent cells (N(C)) for slotted-tube stents with various diameters and intrastrut areas. Optimal stent designs were defined as those minimizing the area of low intrastrut time-averaged WSS. Interestingly, we determined that the optimal value of N(C) was dependent on the intrastrut angle with respect to the primary flow direction. Further investigation indicated that stent designs with an intrastrut angle of approximately 40 deg minimized the area of low time-averaged WSS regardless of vessel size or intrastrut area. Future application of this optimization method to commercially available stent designs may lead to stents with superior hemodynamic performance and the potential for improved clinical outcomes.  相似文献   

18.
Although high-impact hemodynamic forces are thought to lead to cerebral aneurysmal change, little is known about the aneurysm formation on the inner aspect of vascular bends such as the internal carotid artery (ICA) siphon where wall shear stress (WSS) is expected to be low. This study evaluates the effect of vessel curvature and hemodynamics on aneurysm formation along the inner carotid siphon. Catheter 3D-rotational angiographic volumes of 35 ICA (10 aneurysms, 25 controls) were evaluated in 3D for radius of curvature and peak curvature of the siphon bend, followed by univariate statistical analysis. Computational fluid dynamic (CFD) simulations were performed on patient-derived models after aneurysm removal and on synthetic variants of increasing curvature. Peak focal siphon curvature was significantly higher in aneurysm bearing ICAs (0.36±0.045 vs. 0.30±0.048 mm−1, p=0.003), with no difference in global radius of curvature (p=0.36). In CFD simulations, increasing parametric curvature tightness (from 5 to 3 mm radius) resulted in dramatic increase of WSS and WSS gradient magnitude (WSSG) on the inner wall of the bend. In patient-derived data, the location of aneurysms coincided with regions of low WSS (<4 Pa) flanked by high WSS and WSSG peaks. WSS peaks correlated with the aneurysm neck. In contrast, control siphon bends displayed low, almost constant, WSS and WSSG profiles with little spatial variation. High bend curvature induces dynamically fluctuating high proximal WSS and WSSG followed by regions of flow stasis and recirculation, leading to local conditions known to induce destructive vessel wall remodeling and aneurysmal initiation.  相似文献   

19.
The study of hemodynamic alterations following the creation of an arteriovenous fistula (AVF) is relevant to vascular adaptive responses and hemodialysis access dysfunction. This study examined such alterations in a murine AVF created by anastomosing the carotid artery to the jugular vein. AVF blood flow was markedly increased due to reduced AVF vascular resistance. Despite such markedly increased basal blood flow, AVF blood flow further increased in response to acetylcholine. This AVF model exhibited increased cardiac output and decreased systemic vascular resistance; the kidney, in contrast, exhibited decreased blood flow and increased vascular resistance. Augmentation in AVF blood flow was attended by increased arterial heme oxygenase-1 (HO-1) mRNA and protein expression, the latter localized to smooth muscle cells of the AVF artery; AVF blood flow was substantially reduced in HO-1(-/-) mice compared with HO-1(+/+) mice. Finally, in a murine model of a representative disease known to exhibit impaired hemodynamic responses (sickle cell disease), the creation of an AVF was attended by decreased AVF flow and impaired AVF function. We conclude that this AVF model exhibits markedly increased AVF blood flow, a vasodilatory reserve capacity, increased cardiac output, decreased renal blood flow, and a dependency on intact hemodynamic responses, in general, and HO-1 expression, in particular, in achieving and maintaining AVF blood flow. We suggest that these findings support the utility of this model in investigating the basis for and the consequences of hemodynamic stress, including shear stress, and the pathobiology of hemodialysis AVF dysfunction.  相似文献   

20.
The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that stent geometry may cause local alterations in wall shear stress (WSS) that have been associated with neointimal hyperplasia and subsequent restenosis. However, previous CFD studies have ignored histological evidence of vascular straightening between circumferential stent struts. We tested the hypothesis that consideration of stent-induced vascular deformation may more accurately predict alterations in indexes of WSS that may subsequently account for histological findings after stenting. We further tested the hypothesis that the severity of these alterations in WSS varies with the degree of vascular deformation after implantation. Steady-state and time-dependent simulations of three-dimensional CFD arteries based on canine coronary artery measurements of diameter and blood flow were conducted, and WSS and WSS gradients were calculated. Circumferential straightening introduced areas of high WSS between stent struts that were absent in stented vessels of circular cross section. The area of vessel exposed to low WSS was dependent on the degree of circumferential vascular deformation and axial location within the stent. Stents with four vs. eight struts increased the intrastrut area of low WSS in vessels, regardless of cross-sectional geometry. Elevated WSS gradients were also observed between struts in vessels with polygonal cross sections. The results obtained using three-dimensional CFD models suggest that changes in vascular geometry after stent implantation are important determinants of WSS distributions that may be associated with subsequent neointimal hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号