首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cyclic variations in nitrogen uptake rate in soybean plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake of NO3 by nonnodulated soybean plants (Glycine max L. Merr. cv Ransom) growing in flowing hydroponic culture at 22 and 14°C root temperatures was measured daily during a 31-day growth period. Ion chromatography was used to determine removal of NO3 from solution during each 24-hour period. At both root-zone temperatures, rate of NO3 uptake per plant oscillated with a periodicity of 3 to 5 days. The rate of NO3 uptake per plant was consistently lower at 14°C than 22°C. The lower rate of NO3 uptake at 14°C during the initial 5 to 10 days was caused by reduced uptake rates per gram root dry weight, but with time uptake rates per gram root became equal at 14 and 22°C. Thereafter, the continued reduction in rate of NO3 uptake per plant at 14°C was attributable to slower root growth.  相似文献   

2.
The influence of nitrogen stress on net nitrate uptake resulting from concomitant 15NO3 influx and 14NO3 efflux was examined in two 12-day-old inbred lines of maize. Plants grown on 14NO3 were deprived of nitrogen for up to 72 hours prior to the 12th day and then exposed for 0.5 hour to 0.15 millimolar nitrate containing 98.7 atom% 15N. The nitrate concentration of the roots declined from approximately 100 to 5 micromolar per gram fresh weight during deprivation, and 14NO3 efflux was linearly related to root nitrate concentration. Influx of 15NO3 was suppressed in nitrogen-replete plants and increased with nitrogen deprivation up to 24 hours, indicating a dissipation of factors suppressing influx. Longer periods of nitrogen-deprivation resulted in a decline in 15NO3 influx from its maximal rate. The two inbreds differed significantly in the onset and extent of this decline, although their patterns during initial release from influx suppression were similar. Except for plants of high endogenous nitrogen status, net nitrate uptake was largely attributable to influx, and genetic variation in the regulation of this process is implied.  相似文献   

3.
Using 13NO3, effects of various NO3 pretreatments upon NO3 influx were studied in intact roots of barley (Hordeum vulgare L. cv Klondike). Prior exposure of roots to NO3 increased NO3 influx and net NO3 uptake. This `induction' of NO3 uptake was dependent both on time and external NO3 concentration ([NO3]). During induction influx was positively correlated with root [NO3]. In the postinduction period, however, NO3 influx declined as root [NO3] increased. It is suggested that induction and negative feedback regulation are independent processes: Induction appears to depend upon some critical cytoplasmic [NO3]; removal of external NO3 caused a reduction of 13NO3 influx even though mean root [NO3] remained high. It is proposed that cytoplasmic [NO3] is depleted rapidly under these conditions resulting in `deinduction' of the NO3 transport system. Beyond 50 micromoles per gram [NO3], 13NO3 influx was negatively correlated with root [NO3]. However, it is unclear whether root [NO3] per se or some product(s) of NO3 assimilation are responsible for the negative feedback effects.  相似文献   

4.
In soybean (Glycine max L. Merr. cv Kingsoy), NO3 assimilation in leaves resulted in production and transport of malate to roots (B Touraine, N Grignon, C Grignon [1988] Plant Physiol 88: 605-612). This paper examines the significance of this phenomenon for the control of NO3 uptake by roots. The net NO3 uptake rate by roots of soybean plants was stimulated by the addition of K-malate to the external solution. It was decreased when phloem translocation was interrupted by hypocotyl girdling, and partially restored by malate addition to the medium, whereas glucose was ineffective. Introduction of K-malate into the transpiration stream using a split root system resulted in an enrichment of the phloem sap translocated back to the roots. This treatment resulted in an increase in both NO3 uptake and C excretion rates by roots. These results suggest that NO3 uptake by roots is dependent on the availability of shoot-borne, phloem-translocated malate. Shoot-to-root transport of malate stimulated NO3 uptake, and excretion of HCO3 ions was probably released by malate decarboxylation. NO3 uptake rate increased when the supply of NO3 to the shoot was increased, and decreased when the activity of nitrate reductase in the shoot was inhibited by WO42−. We conclude that in situ, NO3 reduction rate in the shoot may control NO3 uptake rate in the roots via the translocation rate of malate in the phloem.  相似文献   

5.
An experiment was conducted to investigate the relative changes in NO3 assimilatory processes which occurred in response to decreasing carbohydrate availability. Young tobacco plants (Nicotiana tabacum [L.], cv NC 2326) growing in solution culture were exposed to 1.0 millimolar 15NO3 for 6 hour intervals during a normal 12 hour light period and a subsequent period of darkness lasting 42 hours. Uptake of 15NO3 decreased to 71 to 83% of the uptake rate in the light during the initial 18 hours of darkness; uptake then decreased sharply over the next 12 hours of darkness to 11 to 17% of the light rate, coincident with depletion of tissue carbohydrate reserves and a marked decline in root respiration. Changes also occurred in endogenous 15NO3 assimilation processes, which were distinctly different than those in 15NO3 uptake. During the extended dark period, translocation of absorbed 15N out of the root to the shoot varied rhythmically. The adjustments were independent of 15NO3 uptake rate and carbohydrate status, but were reciprocally related to rhythmic adjustments in stomatal resistance and, presumably, water movement through the root system. Whole plant reduction of 15NO3 always was limited more than uptake. The assimilation of 15N into insoluble reduced-N in roots remained a constant proportion of uptake throughout, while assimilation in the shoot declined markedly in the first 18 hours of darkness before stabilizing at a low level. The plants clearly retained a capacity for 15NO3 reduction and synthesis of insoluble reduced-15N even when 15NO3 uptake was severely restricted and minimal carbohydrate reserves remained in the tissue.  相似文献   

6.
Bowman DC  Paul JL 《Plant physiology》1988,88(4):1303-1309
Assimilation of NO3 and NH4+ by perennial ryegrass (Lolium perenne L.) turf, previously deprived of N for 7 days, was examined. Nitrogen uptake rate was increased up to four- to five-fold for both forms of N by N-deprivation as compared to N-sufficient controls, with the deficiency-enhanced N absorption persisting through a 48 hour uptake period. Nitrate, but not NH4+, accumulated in the roots and to a lesser degree in shoots. By 48 hours, 53% of the absorbed NO3 had been reduced, whereas 97% of the NH4+ had been assimilated. During the early stages (0 to 8 hours) of NO3 uptake by N-deficient turf, reduction occurred primarily in the roots. Between 8 and 16 hours, however, the site of reduction shifted to the shoots. Nitrogen form did not affect partitioning of the absorbed N between roots (40%) and shoots (60%) but did affect growth. Compared to NO3, NH4+ uptake inhibited root, but not shoot, growth. Total soluble carbohydrates decreased in both roots and shoots during the uptake period, principally the result of fructan metabolism. Ammonium uptake resulted in greater total depletion of soluble carbohydrates in the root compared to NO3 uptake. The data indicate that N assimilation by ryegrass turf utilizes stored sugars but is also dependent on current photosynthate.  相似文献   

7.
The effect of the exogenous and endogenous NO3 concentration on net uptake, influx, and efflux of NO3 and on nitrate reductase activity (NRA) in roots was studied in Phaseolus vulgaris L. cv. Witte Krombek. After exposure to NO3, an apparent induction period of about 6 hours occurred regardless of the exogenous NO3 level. A double reciprocal plot of the net uptake rate of induced plants versus exogenous NO3 concentration yielded four distinct phases, each with simple Michaelis-Menten kinetics, and separated by sharp breaks at about 45, 80, and 480 micromoles per cubic decimeter.

Influx was estimated as the accumulation of 15N after 1 hour exposure to 15NO3. The isotherms for influx and net uptake were similar and corresponded to those for alkali cations and Cl. Efflux of NO3 was a constant proportion of net uptake during initial NO3 supply and increased with exogenous NO3 concentration. No efflux occurred to a NO3-free medium.

The net uptake rate was negatively correlated with the NO3 content of roots. Nitrate efflux, but not influx, was influenced by endogenous NO3. Variations between experiments, e.g. in NO3 status, affected the values of Km and Vmax in the various concentration phases. The concentrations at which phase transitions occurred, however, were constant both for influx and net uptake. The findings corroborate the contention that separate sites are responsible for uptake and transitions between phases.

Beyond 100 micromoles per cubic decimeter, root NRA was not affected by exogenous NO3 indicating that NO3 uptake was not coupled to root NRA, at least not at high concentrations.

  相似文献   

8.
Phosphorus stress effects on assimilation of nitrate   总被引:13,自引:3,他引:10       下载免费PDF全文
An experiment was conducted to investigate alterations in uptake and assimilation of NO3 by phosphorus-stressed plants. Young tobacco plants (Nicotiana tabacum [L.], cv NC 2326) growing in solution culture were deprived of an external phosphorus (P) supply for 12 days. On selected days, plants were exposed to 15NO3 during the 12 hour light period to determine changes in NO3 assimilation as the P deficiency progressed. Decreased whole-plant growth was evident after 3 days of P deprivation and became more pronounced with time, but root growth was unaffected until after day 6. Uptake of 15NO3 per gram root dry weight and translocation of absorbed 15NO3 out of the root were noticeably restricted in −P plants by day 3, and effects on both increased in severity with time. Whole-plant reduction of 15NO3 and 15N incorporation into insoluble reduced-N in the shoot decreased after day 3. Although the P limitation was associated with a substantial accumulation of amino acids in the shoot, there was no indication of excessive accumulation of soluble reduced-15N in the shoot during the 12 hour 15NO3 exposure periods. The results indicate that alterations in NO3 transport processes in the root system are the primary initial responses limiting synthesis of shoot protein in P-stressed plants. Elevated amino acid levels evidently are associated with enhanced degradation of protein rather than inhibition of concurrent protein synthesis.  相似文献   

9.
A computer-controlled multichannel data acquisition system was employed to obtain continuous measurements of net nitrate or chlorate uptake by roots of intact barley plants (Hordeum vulgare cv Betzes) using nitrate-specific electrodes. Plants, previously grown in solutions maintained at 10 or 200 micromolar NO3 (low N or high N conditions, respectively), were provided with 200 micromolar NO3 or ClO3 during the uptake period. Initial rates of NO3 uptake were several times higher in low N plants than in high N plants. Within 10 min, uptake in the former plants declined to a new steady rate which was sustained for the remainder of the experiment. No such time-dependent changes were evident in the high N plants. Rates and patterns of net chlorate uptake exhibited almost identical dependence upon previous nitrate provision. NO3 (36ClO3) influx, by contrast, appeared to be independent of NO3 pretreatment prior to influx determination. Nitrate efflux, estimated by several different methods, was strongly correlated with internal nitrate concentration of the roots.  相似文献   

10.
Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3 uptake by more than 90% but had no effect on NO2 uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3 uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3 uptake. The results present the possibility that NO3 uptake and NO3 reduction in the PM of barley roots may be related.  相似文献   

11.
An experiment was conducted to determine the extent that NO3 taken up in the dark was assimilated and utilized differently by plants than NO3 taken up in the light. Vegetative, nonnodulated soybean plants (Glycine max L. Merrill, `Ransom') were exposed to 15NO3 throughout light (9 hours) or dark (15 hours) phases of the photoperiod and then returned to solutions containing 14NO3, with plants sampled subsequently at each light/dark transition over 3 days. The rates of 15NO3 absorption were nearly equal in the light and dark (8.42 and 7.93 micromoles per hour, respectively); however, the whole-plant rate of 15NO3 reduction during the dark uptake period (2.58 micromoles per hour) was 46% of that in the light (5.63 micromoles per hour). The lower rate of reduction in the dark was associated with both substantial retention of absorbed 15NO3 in roots and decreased efficiency of reduction of 15NO3 in the shoot. The rate of incorporation of 15N into the insoluble reduced-N fraction of roots in darkness (1.10 micromoles per hour) was somewhat greater than that in the light (0.92 micromoles per hour), despite the lower rate of whole-plant 15NO3 reduction in darkness.

A large portion of the 15NO3 retained in the root in darkness was translocated and incorporated into insoluble reduced-N in the shoot in the following light period, at a rate which was similar to the rate of whole-plant reduction of 15NO3 acquired during the light period. Taking into account reduction of NO3 from all endogenous pools, it was apparent that plant reduction in a given light period (~13.21 micromoles per hour) exceeded considerably the rate of acquisition of exogenous NO3 (8.42 micromoles per hour) during that period. The primary source of substrate for NO3 reduction in the dark was exogenous NO3 being concurrently absorbed. In general, these data support the view that a relatively small portion (<20%) of the whole-plant reduction of NO3 in the light occurred in the root system.

  相似文献   

12.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

13.
Dark-grown, detopped corn seedlings (cv. Pioneer 3369A) were exposed to treatment solutions containing Ca(NO3)2, NaNO3, or KNO3; KNO3 plus 50 or 100 millimolar sorbitol; and KNO3 at root temperatures of 30, 22, or 16 C. In all experiments, the accelerated phase of NO3 transport had previously been induced by prior exposure to NO3 for 10 hours. The experimental system allowed direct measurements of net NO3 uptake and translocation, and calculation of NO3 reduction in the root. The presence of K+ resulted in small increases in NO3 uptake, but appreciably stimulated NO3 translocation out of the root. Enhanced translocation was associated with a marked decrease in the proportion of absorbed NO3 that was reduced in the root. When translocation was slowed by osmoticum or by low root temperatures, a greater proportion of absorbed NO3 was reduced in the presence of K+. Results support the proposition that NO3 reduction in the root is reciprocally related to the rate of NO3 transport through the root symplasm.  相似文献   

14.
The net influx (uptake) rates of NO3, NH4+, NO2, and urea into roots of wheat (Triticum aestivum cv Yecora Rojo) seedlings from complete nutrient solutions containing all four compounds were monitored simultaneously. Although urea uptake was too slow to monitor, its presence had major inhibitory effects on the uptake of each of the other compounds. Rates of NO3, NH4+, and NO2 uptake depended in a complex fashion on the concentration of all four N compounds. Equations were developed which describe the uptake rates of each of the compounds, and of total N, as functions of concentrations of all N sources. Contour plots of the results show the interactions over the range of concentrations employed. The coefficients of these equations provide quantitative values for evaluating primary and interactive effects of each compound on N uptake.  相似文献   

15.
Mahon JD 《Plant physiology》1977,60(6):817-821
Pisum sativum L. cv. Trapper plants were inoculated and grown in a controlled environment on N-free nutrient solution. After 4 weeks N was supplied to treatment plants as NH4NO3, KNO3, or NH4Cl and rates of C2H2 reduction, root + nodule respiration, and leaf photosynthesis were determined 1 week later. The increase in respiration per unit of C2H2 reduction was not affected by either the form of N added or the light conditions during growth, although the basal respiration rate with no C2H2 reduction increased with irradiance level. The mean regression coefficient from plots of respiration versus C2H2 reduction was 0.23 + 0.04 (P [unk] .01) mg of CO2 (μmol of C2H2 reduced)−1 which was very similar to the value for the coefficient of respiration associated with nitrogenase activity estimated by subtracting growth and maintenance respiration. Since the rate of N accumulation in N-free nutrient conditions was proportional to the rate of C2H2 reduction, it appears that the method gives a true estimate of the energy requirements for N fixation which for these conditions was equivalent to 17 grams of carbohydrate consumed per gram of N fixed.  相似文献   

16.
The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3 and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3 uptake and also prevented development of the NO3-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3 uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3 reduction was detected. Ammonium uptake was less sensitive than NO3 uptake to inhibition by FA. An inhibition of Cl uptake occurred as induction of the NO3 transport system developed in the absence of FA. Alterations of Cl uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3 uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances.  相似文献   

17.
Nitrate and NO2 transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3 and NO2 was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3 and NO2. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3 and NO2 uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3 and NO2 uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3 uptake ranged from 34 to 36 micromolar and of NO2 uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3 and NO2 inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3 was a more effective inhibitor than NO2. Nitrate and NO2 transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.  相似文献   

18.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

19.
Changes in the concentrations of NH4+ and amides during the growth of suspension cultures of rose (Rosa cv. Paul's Scarlet) cells were examined. When cells were grown in medium possessing only NO3 as a nitrogen source, the concentrations of NH4+ and amides increased to 4.0 × 10−1 and 5.9 micromoles per gram fresh weight, respectively. The amounts of both constituents declined during the later stages of growth. When a trace amount of NH4+ was added to the NO3 base starting medium, the concentration of NH4+ in the cells was increased to 7.0 × 10−1 micromoles per gram fresh weight.  相似文献   

20.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号