首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Previous studies with methyl ethyl ketone peroxide (MEKP), a radical generator, showed depletion of plasma vitamin E and liver glutathione (GSH) levels prior to a decrease of liver vitamin E levels. Since hepatic pools of this vitamin may serve to maintain circulating levels of vitamin E under conditions of oxidative challenge, we have evaluated the similarity of response after treatment with 1,2-dibromoethane (DBE), a compound that is not known to generate oxyradicals or to induce lipid peroxidation in vivo. Treatment of normal rats with DBE caused a depletion in hepatic vitamin E levels 1 day after treatment; however, in contrast to our prior findings with MEKP this depletion after DBE treatment was observed in tandem with elevations in the plasma content of vitamin E. Liver vitamin E depletion was neither dependent upon a sustained liver GSH depletion nor upon hepatocellular death. Mobilization and export of hepatic vitamin E did not result in an immediate whole body redistribution of this vitamin in that pulmonary and renal levels of vitamin E remained normal under conditions of liver vitamin E depletion. Moreover, the stimulus that resulted in exportation of liver vitamin E was maintained by daily treatments with DBE. DBE caused a substantial elevation above control values in liver GSH content and these elevations were also maintained by daily DBE treatments. In experiments to assess the influence of prandial replacement of vitamin E on the extent of depletion in response to DBE treatment, rats were fed a vitamin E-deficient diet for 2 days prior to treatment. This short pulse of a vitamin E-deficient diet delayed (to 2 days) both the elevation in liver GSH content and the depletion of liver vitamin E and hastened (to 1 day) the elevation in plasma vitamin E concentration. These observations suggest the presence of at least two pools of liver vitamin E and that one of these pools, which comprises at least 30% of the total hepatic vitamin E content, is able to be mobilized and exported in response to chemical challenge. The stimulus that resulted in liver vitamin E exportation in response to DBE treatment seems to result from wholly intrahepatic processes and may not be a direct response to lipid peroxidation. Moreover, the similarity between the time-course and the extent of hepatic vitamin E depletion observed after treatment with either MEKP or DBE suggests a similarity in physiochemical processes that function to mobilize hepatic vitamin E stores.  相似文献   

2.
In this investigation Salmonella typhimurium strain TA 1530 and TA 1535 were combined with isolated perfused rat liver. Samples of perfusate and bile produced were tested for mutagenicity after treatment with 1,2-dichloroethane (DCE), 1,2-dibromoethane (DBE) or 2-chloroethanol. The results are in good agreement with our previous experiments which indicate that both DEC and DBE are activated through conjugation with glutathione (GSH). Most GSH conjugates are normally excreted in bile. Following liver perfusion the bile was highly mutagenic after DCE and DBE treatments, while 2-chloroethanol did not have this effect. The highest mutagenic effect was seen 15--30 min after the addition of DCE or DBE. The production of mutagenic bile also occurred in mice treated in vivo with DCE. One possible metabolic endproduct of a GSH conjugate is the corresponding mercapturic acid. Thus synthetic N-acetyl-S-(2-chloroethyl)-L-cysteine was tested on TA 1535 and found to be as mutagenic as S-(2-chloroethyl)-L-cysteine in the concentration range 0.2--0.6 mumol/plate. Differences and similarities in the metabolism of DCE and vinyl chloride are discussed on the basis of these results.  相似文献   

3.
A decline in reduced glutathione (GSH) levels is associated with aging and many age-related diseases. The objective of this study was to determine whether other antioxidants can compensate for GSH depletion in protection against oxidative insults. Rabbit lens epithelial cells were depleted of > 75% of intracellular GSH by 25-200 microM buthionine sulfoximine (BSO). Depletion of GSH by BSO alone had little direct effect on cell viability, but resulted in an approximately 30-fold increase in susceptibility to H(2)O(2)-induced cell death. Experimentally enhanced levels of nonprotein sulfhydryls other than GSH (i.e., N-acetylcysteine) did not protect GSH-depleted cells from H(2)O(2)-induced cell death. In contrast, pretreatment of cells with vitamin C (25-50 microM) or vitamin E (5-40 microM), restored the resistance of GSH-depleted cells to H(2)O(2). However, concentrations of vitamin C > 400 microM and vitamin E > 80 microM enhanced the toxic effect of H(2)O(2). Although levels of GSH actually decreased by 10-20% in cells supplemented with vitamin C or vitamin E, the protective effects of vitamin C and vitamin E on BSO-treated cells were associated with significant ( approximately 70%) decreases in oxidized glutathione (GSSG) and concomitant restoration of the cellular redox status (as indicated by GSH:GSSG ratio) to levels detected in cells not treated with BSO. These results demonstrate a role for vitamin C and vitamin E in maintaining glutathione in its reduced form. The ability of vitamin C and vitamin E in compensations for GSH depletion to protect against H(2)O(2)-induced cell death suggests that GSH, vitamin C, and vitamin E have common targets in their actions against oxidative damage, and supports the preventive or therapeutic use of vitamin C and E to combat age- and pathology-associated declines in GSH. Moreover, levels of these nutrients must be optimized to achieve the maximal benefit.  相似文献   

4.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

5.
The aim of this work was to determine the effects of dietary intake vitamin E and selenium (Se) on lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defense mechanisms in the liver of rats treated with high doses of prednisolone. Two hundred fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se, respectively, for 30 d. For 3 d subsequently, the control group (group 1) was treated with a placebo, and the remaining four groups were injected intramuscularly with 100 mg/kg body weight (BW) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) enzymes and the levels of glutathione (GSH) and TBARS in their livers were measured. GSH-Px, SOD, and CAT enzyme activities and GSH levels in prednisolone-treatment group (group 2) began to decrease gradually at 4 h, falling respectively to 38%, 55%, and 40% of the control levels by 24 h, and recovering to the control levels at 48 h. In contrast, prednisolone administration caused an increase in the hepatic TBARS, reaching up to four times the levels of the control at 24 h. However, supplementation with vitamin E and Se had a preventive effect on the elevation of the hepatic TBARS and improved the diminished activities of the antioxidative enzymes and the levels of GSH. Therefore, the present study demonstrates the effectiveness of vitamin E and Se in reducing hepatic damage in glucocorticoid-treated rats and suggests that reductions in increased TBARS as a result of prednisolone may be an important factor in the action of vitamin E and Se.  相似文献   

6.
A decline in reduced glutathione (GSH) level is associated with aging and free radical mediated diseases. The objective of this study was to determine whether the chronic depletion of extra cellular GSH causes oxidative damage to the circulating macromolecules such as lipoproteins. Decreased concentrations of plasma glutathione, vitamin E and ascorbic acid were recorded in the rats treated with buthionine sulfoximine (BSO), a selective GSH inhibitor. In LDL isolated from BSO-treated animals, the concentration of malondialdehyde (MDA) and conjugated dienes were significantly increased (P<0.01), whereas the levels of vitamin E were decreased (P<0.01). The analysis of total and LDL cholesterol revealed significant changes between the control and experimental groups. Of interest, altered concentrations of lyso-phosphatidyl choline (Lyso-PC) and phosphatidyl choline (PC) were recorded from the BSO mediated minimally modified LDL. A negative correlation between LDL-BDC/MDA and its antioxidant capacity was noted. Upon in vitro oxidation with CuSO(4), the electrophoretic behavior of purified LDL-apoprotein-B on agarose gel showed an increased mobility in BSO-treated rats, indicative of in vivo modification of LDL to become susceptible for in vitro oxidation. The increased mobility of LDL (after in vitro oxidation) isolated from the BSO-treated animals correlates with a decrease in its amino groups, as determined by the trinitrobenzene sulfonic acid (TNBS) reactants. However, the mobility of LDL molecule was not altered due to BSO treatment in vivo. Interestingly, the minimal modification on LDL does not lead to any vascular damage in the dorsal aorta of the rats injected with BSO. The administration of glutathione monoester (GME), at a dose of 5 mmol/kg body weight, twice a day, for 30 days, to animals treated with l-buthionine-SR-sulfoximine (BSO, 4 mmol/kg body weight, twice a day, for 30 days) normalized the antioxidant status and prevented the minimal modifications on LDL. Thus, increasing the cellular GSH levels may trigger beneficial effects against oxidative stress.  相似文献   

7.
The depletion of cell calcium from isolated rat hepatocytes results in stimulated lipid peroxidation, loss of intracellular and mitochondrial GSH (reduced glutathione), and enhancement of both efflux and oxidation of GSH. These events are followed by cell injury and enhance the susceptibility of the cells to toxic chemicals. It is shown herein that an initial event in the generation of such injury is the depletion of cellular alpha-tocopherol. alpha-Tocopheryl succinate addition (25 microM) to the calcium-depleted cells markedly elevated the alpha-tocopherol content of the cells, inhibited the associated lipid peroxidation, and maintained intracellular GSH levels without affecting its efflux or redox status. This resulted in an enhanced formation of total glutathione after a 5-h incubation, which correlated with the alpha-tocopherol content of the cells, and was greater than that expected by a direct sparing action of vitamin E. Inhibition of hepatocyte glutathione biosynthesis by buthionine sulfoximine (0.5 mM) eliminated the enhancement of GSH formation by vitamin E. Analysis of endogenous and 35S-labelled precursors of glutathione biosynthesis by high-performance liquid chromatography demonstrated that the depletion of cellular alpha-tocopherol resulted in the efflux of glutathione precursors. It is concluded that cell injury associated with alpha-tocopherol depletion is partly the result of the efflux of glutathione precursors, and hence diminished biosynthesis and intracellular levels of GSH. These losses and resultant cell injury are preventable by maintenance of cellular alpha-tocopherol levels.  相似文献   

8.
To produce phytoalexin, 6-methoxymellein (6-MM) was induced in suspension cultures of carrot (Daucus carota) by buthionine sulfoximine (BSO) and CuCl2. Addition of BSO (a specific inhibitor of glutathione [GSH] synthesis) to the cultures lowered the cellular GSH levels. This depletion of GSH was BSO-concentration dependent, and the extent of 6-MM accumulation was dependent on the GSH depletion. The accumulation of 6-MM induced by BSO was suppressed by exogenous GSH. Exogenous H2O2 stimulated the production of 6-MM when added 1 d after BSO treatment, whereas H2O2 added at time zero or on the 4th d of BSO treatment did not. Moreover, a synergistic effect of simultaneous addition of BSO and CuCl2 was observed. These results suggest that active oxygen species may be involved in the triggering of 6-MM synthesis.  相似文献   

9.
Treatment of isolated hepatocytes with 1,2-dibromoethane (DBE) caused a concentration dependent depletion of cellular glutathione (GSH) content and a parallel increase in the covalent binding of reactive intermediates to cell proteins, as a consequence of the haloalkane activation. The reduction of the hepatocyte GSH content, induced by DBE, stimulated the onset of lipid peroxidation, as measured by malondialdehyde (MDA) accumulation. N-Acetylcysteine (1 mM) was found to partially prevent GSH loss and to inhibit MDA formation, whereas equal concentrations of cysteine and methionine were ineffective on these respects. The stimulation of the peroxidative reactions appeared to be also associated with an increase in the leakage of lactate dehydrogenase (LDH) from the cells, indicative of a severe hepatocyte injury. Antioxidants such as -tocopherol, N,N′-phenyl-phenylenediamine (DPPD) and promethazine, as well as N-acetylcysteine reduced MDA formation to various extents and also protect against LDH release, yet without interfering with the covalent binding of DBE reactive intermediates to hepatocyte proteins. These results suggest the involvement of lipid peroxidation, consequent to GSH depletion, in the pathogenesis of liver cell necrosis due to DBE.  相似文献   

10.
S Kim  P Y Chao  K G Allen 《FASEB journal》1992,6(7):2467-2471
Dietary copper deficiency causes hypercholesterolemia and increased hepatic 3-hydroxy-3-methyl-glutaryl coenzyme A (MHG-CoA) reductase activity and increased hepatic glutathione (GSH) in rats. We hypothesized that inhibition of GSH production by L-buthionine sulfoximine (BSO), a specific GSH synthesis inhibitor, would abolish the cholesterolemia and increased HMG-CoA reductase activity of copper deficiency. In two experiments, two groups of 20 weanling male rats were fed diets providing 0.4 and 5.8 micrograms Cu/g, copper-deficient (Cu-D) and copper-adequate (Cu-A), respectively. At 35 days plasma cholesterol was significantly elevated by 30 to 43% in Cu-D and 10 animals in each of the Cu-D and Cu-A groups were randomly assigned to receive 10 mM BSO solution in place of drinking water and continued on the same diets for another 2 wk. At necropsy Cu-D animals had a significant 52 to 58% increase in plasma cholesterol. BSO administration abolished the cholesterolemia in Cu-D rats, but had no influence on plasma cholesterol of Cu-A rats. Hepatic GSH was increased 39 to 82% in Cu-D rats and BSO abolished this increase. BSO was without effect on cardiac hypertrophy, plasma and liver copper, and hematocrit indices of copper status. Liver microsome HMG-CoA reductase activity was significantly increased 85 to 288% in Cu-D rats and BSO administration abolished this increase in activity in Cu-D rats. The results suggest that copper deficiency cholesterolemia and elevated HMG-CoA reductase activity are a consequence of elevated hepatic GSH, and provide evidence for GSH regulation of cholesterol metabolism in intact animals.  相似文献   

11.
The protective effects of glutathione monoester (GME) on buthionine sulfoximine (BSO)-induced glutathione (GSH) depletion and its sequel were evaluated in rat erythrocyte/erythrocyte membrane. Animals were divided into three groups (n=6 in each): control, BSO and BSO+GME group. Administration of BSO, at a concentration of 4 mmol/kg bw, to the albino rats resulted in depletion of blood GSH level to about 59%. GSH was elevated several folds in the GME group as compared to the control (P<0.05) and BSO (P<0.001) groups. Decreased concentration of vitamin E was found in the erythrocyte membrane isolated from BSO-administered animals. Antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were also found to be altered due to BSO-induced GSH depletion in blood erythrocytes. The SOD and CAT activities in BSO group were significantly lower (P<0.001) than the other groups. Lipid peroxidation index and malondialdehyde (MDA) levels in erythrocytes and their membranes were increased to about 45% and 40%, respectively. The activities of Ca2+ ATPase, Mg2+ ATPase and Na+K+ ATPase were lower than those of control group (P<0.05), whereas the activities of these enzymes were found to be restored to normal followed by GME therapy (P<0.05). Cholesterol, phospholipid and C/P ratio and some of the phospholipid classes like phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin were significantly (P<0.05) altered in the erythrocyte membranes of BSO-administered rats compared with those of control group. These parameters were restored to control group levels in GME-treated group. Oxidative stress may play a major role in the BSO-mediated gamma glutamyl cysteine synthetase (gamma-GCS) inhibition and hence the depletion of GSH. In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in BSO-treated rats. GME potentiates the RBC and blood antioxidant defense mechanisms and decreases lipid peroxidation.  相似文献   

12.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

13.
Effects of reduced glutathione (GSH) were investigated on invitro lipid peroxidation of hepatic microsomes obtained from Long-Evans Hooded rats fed chemically defined, purified diets containing adequate or documented deficiencies of vitamin E (E), selenium (Se) or both. Glutathione inhibited lipid peroxidation mediated by both NADPH-dependent enzymatic and ascorbate-dependent non-enzymatic systems. The inhibitory effect of GSH was observed in microsomes obtained from E supplemented groups whereas it had no effect on microsomes from E deficient animals. Selenium status had no effect on GSH inhibition. Glutathione was found to be specific for the E dependent inhibition of lipid peroxidation and could not be substituted by other sulfhydryl compounds tested. Also, GSH did not inhibit non-enzymatic lipid peroxidation of heat-denatured microsomes from either E-supplemented groups or any of the other dietary regimens.  相似文献   

14.
15.
The inhibition of glutathione (GSH) synthesis by -buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

16.
This study describes the effect of DL-buthionine-[S,R]-sulfoximine (BSO) on the glutathione equivalents (GSH-eq = GSH + 2 GSSG) of goldfish. BSO causes depletion of cellular GSH by inhibiting gamma-glutamylcysteine synthetase, a key enzyme of the GSH biosynthesis pathway. BSO at 1,000 and 1,500 mg/kg was effective in promoting 50 and 80% depletion of GSH-eq from brain and liver, respectively, within 3 days. Lower doses of BSO failed to effectively promote hepatic GSH-eq depletion. Moreover, no evident toxic side-effects were observed (including hepatic lipid peroxidation and free radical-mediated oxidation of proteins) in goldfish in response to BSO intraperitoneal injections. We conclude that BSO can be used to deplete GSH-eq in goldfish liver and brain, but attention should be paid to species-specific variations in BSO effects.  相似文献   

17.
The nematocide, grain fumigant, and gasoline additive 1,2-dibromoethane (DBE) is both a cellular and a genetic toxin that is metabolically activated in rats and mice by mixed function oxidases (MFO) as well as glutathione 5-transferases (GST). The purpose of this study was to determine whether DBE is similarly metabolized and bioactivated by human liver in vitro. Human liver microsomal and cytosolic metabolism of DBE was monitored by the production of aqueous-soluble metabolites from [14-C]-DBE. Reactive intermediates were detected as irreversibly bound adducts to protein or DNA. 1,2-Dibromoethane was metabolized by human liver cytosolic GST, microsomal GST, and microsomal MFO. Cytosolic GST activity (9 +/- 2 nmol/20 min/mg protein) was about four times greater than the other two activities. Only MFO activity resulted in adducts irreversibly bound to protein (1.5 +/- .4 nmol/20 min/mg protein) and was inhibited by the presence of glutathione. Both MFO and GST activity resulted in irreversibly bound adducts to DNA. Microsomal and cytosolic GST activity each produced about twice as many DNA adducts as microsomal MFO activity. These results suggest that human liver, like rat and mouse liver, metabolizes DBE to aqueous-soluble metabolites by both MFO and GST activity. Furthermore, each of these activities produces reactive metabolites that can irreversibly bind to cellular macromolecules.  相似文献   

18.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

19.
In vivo treatment of fasted male rats with 1,2-dibromoethane (DBE) (0.4 mmol/kg) or carbon tetrachloride (CCl4) (4 mmol/kg) was found to rapidly alter the activities of liver cytosolic and microsomal glutathione S-transferases. Microsomal activities towards chloro-2,4-dinitrobenzene (CDNB) were increased 2 h after either treatment. Cytosolic activities towards CDNB and 3,4-dichloronitrobenzene (DCNB), but not 1,2-epoxy-3-(p-nitrophenoxy)-propane (ENPP), were selectively and transiently decreased after either treatment. Time course studies in DBE animals indicated that the decrease in cytosolic activity was not evident until 2 h although liver glutathione (GSH) concentrations were diminished within 15 min. In contrast, in CCl4 animals the decrease in cytosolic activity was evident within 15 min and was not accompanied by diminished GSH concentrations. By 4 h, cytosolic activities had rebounded to control levels in both DBE and CCl4-treated animals. Kinetic studies of the enzyme in liver cytosol from animals 2 h after treatment with DBE or CCl4 indicated that both treatments decreased the apparent Vmax while neither treatment altered the apparent Km. This pattern of change allows exclusion of a simple competitive mechanism of enzyme inhibition, but cannot distinguish between reversible non-competitive inhibition and irreversible inhibition. It is possible that the observed decreases in the activities of the abundant cytosal enzyme are due to 'sacrificial' covalent linkages between the enzyme and reactive metabolites of DBE or CCl4.  相似文献   

20.
Dietary copper deficiency has been shown to reduce copper-dependent superoxide dismutase (SOD) activity and to increase lipid peroxidation in rats. Circulating reduced glutathione (GSH) concentrations are elevated in copper-deficient (CuD) rats, which suggests an increased GSH synthesis or decreased degradation, perhaps as an adaptation to the oxidative stress of copper deficiency. GSH synthesis was examined in isolated hepatocytes from CuD rats. Isolated hepatocytes were prepared by collagenase perfusion and incubated in Krebs-Henseleit bicarbonate buffer, pH 7.4, 10 mM glucose, 2.5 mM Ca2+ in the presence and absence of 1.0 mM buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis. Cell viability was assessed by trypan blue exclusion. GSH and oxidized glutathione (GSSG) were measured by the glutathione reductase recycling assay. Copper deficiency depressed hepatocyte Cu by greater than 90% and increased intracellular GSH by 41-117% over the 3-h incubation, with a two- to threefold increase in the rate of intracellular GSH synthesis. Intracellular GSSG values were minimally influenced by CuD, with a constant mol% GSSG. Extracellular total glutathione (GSH + 2GSSG) synthesis was increased by approximately 33%. Both intracellular GSH and extracellular total glutathione synthesis were inhibited by BSO. The pattern of food consumption in CuD rats, meal fed versus ad libitum fed, had no effect on glutathione synthesis. The results indicate an increased hepatic GSH synthesis as a response to dietary copper deficiency and suggest an interrelationship between the essential nutrients involved in oxyradical metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号