首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fgf8 functions as an organizer at the mes/metencephalic boundary (isthmus). We showed that a strong Fgf8 signal activates the Ras-ERK signaling pathway to organize cerebellar differentiation. Sprouty2 is expressed in an overlapping manner to Fgf8, and is induced by Fgf8. Its function, however, is indicated to antagonize Ras-ERK signaling. Here, we show the regulation of Fgf8 signaling in relation to Sprouty2. sprouty2 expression was induced very rapidly by Fgf8b, but interfered with ERK activation. sprouty2 misexpression resulted in a fate change of the presumptive metencephalon to the mesencephalon. Misexpression of a dominant negative form of Sprouty2 augmented ERK activation, and resulted in anterior shift of the posterior border of the tectum. The results indicate that Fgf8 activates the Ras-ERK signaling pathway to differentiate the cerebellum, and that the hyper- or hypo-signaling of this pathway affects the fate of the brain vesicles. Sprouty2 may regulate the Fgf8-Ras-ERK signaling pathway for the proper regionalization of the metencephalon and mesencephalon.  相似文献   

2.
The mes/metencephalic boundary (isthmus) has an organizing activity for mesencephalon and metencephalon. The candidate signaling molecule is Fgf8 whose mRNA is localized in the region where the cerebellum differentiates. Responding to this signal, the cerebellum differentiates in the metencephalon and the tectum differentiates in the mesencephalon. Based on the assumption that strong Fgf8 signal induces the cerebellum and that the Fgf8b signal is stronger than that of Fgf8a, we carried out experiments to misexpress Fgf8b and Fgf8a in chick embryos. Fgf8a did not affect the expression pattern of Otx2, Gbx2 or Irx2. En2 expression was upregulated in the mesencephalon and in the diencephalon by Fgf8a. Consequently, Fgf8a misexpression resulted in the transformation of the presumptive diencephalon to the fate of the mesencephalon. In contrast, Fgf8b repressed Otx2 expression, but upregulated Gbx2 and Irx2 expression in the mesencephalon. As a result, Fgf8b completely changed the fate of the mesencephalic alar plate to cerebellum. Quantitative analysis showed that Fgf8b signal is 100 times stronger than Fgf8a signal. Co-transfection of Fgf8b with Otx2 indicates that Otx2 is a key molecule in mesencephalic generation. We have shown by RT-PCR that both Fgf8a and Fgf8b are expressed, Fgf8b expression prevailing in the isthmic region. The results all support our working hypothesis that the strong Fgf8 signal induces the neural tissue around the isthmus to differentiate into the cerebellum.  相似文献   

3.
The vertebrate central nervous system is elaborated from a simple neural tube. Brain vesicles formation is the first sign of regionalization. Classical transplantation using quail and chick embryos revealed that the mesencephalon–metencephalon boundary (isthmus) functions as an organizer of the mesencephalon and metencephalon. Fgf8 is accepted as a main organizing molecule of the isthmus. Strong Fgf8 signal activates the Ras-ERK signaling pathway to differentiate the cerebellum. In this review, the historical background of the means of identifying the isthmus organizer and the molecular mechanisms of signal transduction for tectum and cerebellum differentiation is reviewed.  相似文献   

4.
In the previous studies, we showed that strong Fgf8 signaling activates the Ras-ERK pathway to induce cerebellum. Here, we show importance of negative regulation following activation of this pathway for proper regionalization of mesencephalon and metencephalon in chick embryos. ‘Prolonged’ activation of ERK by misexpression of Fgf8b and dominant-negative Sprouty2 (dnSprouty2) did not change the fate of the mesencephalic alar plate. Downregulation of ERK activity using an MEK inhibitor, U0126, or by tetracycline-dependent Tet-off system after co-expression of Fgf8b and dnSprouty2 forced the mesencephalic alar plate to differentiate into cerebellum. We then paid attention to Mkp3. After misexpression of dnMkp3 and Fgf8b, slight downregulation of ERK activity occurred, which may be due to Sprouty2, and the mesencephalon transformed to the isthmus-like structure. The results indicate that ERK must be once upregulated and then be downregulated for cerebellar differentiation and that differential ERK activity level established by negative regulators receiving Fgf8 signal may determine regional specificity of mesencephalon and metencephalon.  相似文献   

5.
6.
The mesencephalic/rhombomere 1 border (isthmus) is an organizing center for early development of midbrain and cerebellum. In this review, we summarize recent progress in studies of Fgf signaling in the isthmus and discuss how the isthmus instructs the differentiation of the midbrain versus cerebellum. Fgf8 is shown to play a pivotal role in isthmic organizer activity. Only a strong Fgf signal mediated by Fgf8b activates the Ras-extracellular signal-regulated kinase (ERK) pathway, and this is sufficient to induce cerebellar development. A lower level of signaling transduced by Fgf8a, Fgf17 and Fgf18 induce midbrain development. Numerous feedback loops then maintain appropriate mesencephalon/rhombomere1 and organizer gene expression.  相似文献   

7.
8.
9.
The isthmus is the organizing center for the tectum and cerebellum. Fgf8 and Wnt1 are secreted molecules expressed around the isthmus. The function of Fgf8 has been well analyzed, and now accepted as the most important organizing signal. Involvement of Wnt1 in the isthmic organizing activity was suggested by analysis of Wnt1 knockout mice. But its role in isthmic organizing activity is still obscure. Recently, it has been shown that Lmx1b is expressed in the isthmic region and that it may occupy higher hierarchical position in the gene expression cascade in the isthmus. We have carried out misexpression experiment of Lmx1b and Wnt1, and considered their role in the isthmic organizing activity. Lmx1b or Wnt1 misexpression caused expansion of the tectum and cerebellum. Fgf8 was repressed in a cells that misexpress Lmx1b, but Fgf8 expression was induced around Lmx1b-misexpressing cells. As Lmx1b induced Wnt1 and Wnt1 induced Fgf8 expression in turn, Wnt1 may be involved in non cell-autonomous induction of Fgf8 expression by Lmx1b. Wnt1 could not induce Lmx1b expression so that Lmx1b may be put at the higher hierarchical position than Wnt1 in gene expression cascade in the isthmus. We have examined the relationship among isthmus related genes, and discuss the mechanism of the formation and maintenance of isthmic organizing activity.  相似文献   

10.
Otx2 is expressed in the mesencephalon and prosencephalon, and Gbx2 is expressed in the rhombencephalon around stage 10. Loss-of-function studies of these genes in mice have revealed that Otx2 is indispensable for the development of the anterior brain segment, and that Gbx2 is required for the development of the isthmus. We carried out gain-of-function experiments of these genes in chick embryos with a newly developed gene transfer system, in ovo electroporation. When Otx2 was ectopically expressed caudally beyond the midbrain-hindbrain boundary (MHB), the alar plate of the metencephalon differentiated into the optic tectum instead of differentiating into the cerebellum. On the other hand, when Gbx2 was ectopically expressed at the mesencephalon, the caudal limit of the tectum shifted rostrally. We looked at the effects of misexpression on the isthmus- and tectum-related molecules. Otx2 and Gbx2 interacted to repress each other's expression. Ectopic Otx2 and Gbx2 repressed endogenous expression of Fgf8 in the isthmus, but induced Fgf8 expression at the interface between Otx2 and Gbx2 expression. Thus, it is suggested that interaction between Otx2 and Gbx2 determines the site of Fgf8 expression and the posterior limit of the tectum.  相似文献   

11.
12.
Numerous studies have demonstrated that the midbrain and cerebellum develop from a region of the early neural tube comprising two distinct territories known as the mesencephalon (mes) and rostral metencephalon (met; rhombomere 1), respectively. Development of the mes and met is thought to be regulated by molecules produced by a signaling center, termed the isthmic organizer (IsO), which is localized at the boundary between them. FGF8 and WNT1 have been implicated as key components of IsO signaling activity, and previous studies have shown that in Wnt1(-/-) embryos, the mes/met is deleted by the 30 somite stage ( approximately E10) (McMahon, A. P. and Bradley, A. (1990) Cell 62, 1073-1085). We have studied the function of FGF8 in mouse mes/met development using a conditional gene inactivation approach. In our mutant embryos, Fgf8 expression was transiently detected, but then was eliminated in the mes/met by the 10 somite stage ( approximately E8.75). This resulted in a failure to maintain expression of Wnt1 as well as Fgf17, Fgf18, and Gbx2 in the mes/met at early somite stages, and in the absence of the midbrain and cerebellum at E17.5. We show that a major cause of the deletion of these structures is ectopic cell death in the mes/met between the 7 and 30 somite stages. Interestingly, we found that the prospective midbrain was deleted at an earlier stage than the prospective cerebellum. We observed a remarkably similar pattern of cell death in Wnt1 null homozygotes, and also detected ectopic mes/met cell death in En1 null homozygotes. Our data show that Fgf8 is part of a complex gene regulatory network that is essential for cell survival in the mes/met.  相似文献   

13.
14.
Pluripotentiality of the 2-day-old avian germinative neuroepithelium   总被引:2,自引:0,他引:2  
In a previous study using chick/quail chimeric embryos with homotopic transplants (Martinez & Alvarado-Mallart, 1989b), we have delimited in the 2-day-old avian embryo the areas of the neural tube giving rise to optic tectum and mesencephalic grissea as well as to isthmic grissea and cerebellum: respectively, "mesencephalic" and "metencephalic" alar plates. To investigate the determination or the competence of these areas, portions of these germinative neuroepithelia from a quail embryo were transplanted in substitution for other areas of the chick neural tube. The analysis of the chimeric brains was done by comparing alternating transverse sections stained for cytoarchitecture and with two different techniques to recognize transplanted versus host cells: either the Feulgen and Rossenbeck DNA histochemical reaction and/or immunohistochemical methods with a monoclonal antibody recognizing quail but not chick cells. The eventual visual innervation of the quail graft was analyzed in many cases by injecting anterograde axonal tracers in the eye contralateral to the graft. The results are as follows: (1) caudal metencephalon transferred to mesencephalon maintained in all cases its presumptive cerebellar phenotype, whereas (2) rostral metencephalon transferred to mesencephalon changed its fate to a tectal phenotype but maintained its cerebellar fate when transferred to diencephalon; (3) caudal mesencephalon maintained its tectal fate in 65% of the cases when transferred to diencephalon, whereas (4) rostral mesencephalon transferred to a cerebellar domain changed its fate and became influenced by the surrounding structures in all cases, but only in 85% of the cases when it was transplanted to diencephalon; (5) the in situ host diencephalon, isolated from its normal environment by a mesencephalic graft, is competent to change its fate and express a mesencephalic phenotype. These results demonstrate that at least some regions of the germinative neuroepithelium from either metencephalon, mesencephalon, and diencephalon are still pluripotent in the 2-day-old avian embryo and that their fate seems to be under the influence of the surrounding structures. Rostral mesencephalon and rostral metencephalon have been more easily influenced by environmental factors than their caudal counterparts, suggesting that regions providing instructive positional factors exist within the 2-day-old germinative neuroepithelium. These regions might play an important role in the determination of the various segments of the neural tube.  相似文献   

15.
The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.  相似文献   

16.
Pax3/7 is expressed in the alar plate of the mesencephalon. The optic tectum differentiates from the alar plate of the mesencephalon, and expression of Pax3/7 is well correlated to the tectum development. To explore the function of Pax3 and Pax7 in the tectum development, we misexpressed Pax3 and Pax7 in the diencephalon and ventral mesencephalon. Morphological and molecular marker gene analysis indicated that Pax3 and Pax7 misexpression caused fate change of the alar plate of the presumptive diencephalon to that of the mesencephalon, that is, a tectum and a torus semicircularis were formed ectopically. Ectopic tectum in the diencephalon appeared to be generated through sequential induction of Fgf8, En2 and Pax3/7. In ventral mesencephalon, which expresses En but does not differentiate to the tectum in normal development, Pax3 and Pax7 misexpression induced ectopic tectum. In normal development, Pax3 and Pax7 expression in the mesencephalon commences after Otx2, En and Pax2/5 expression. In addition, expression domain of Pax3 and Pax7 is well consistent with presumptive tectum region in a dorsoventral axis. Taken together with normal expression pattern of Pax3 and Pax7, results of misexpression experiments suggest that Pax3 and Pax7 define the tectum region subsequent to the function of Otx2 and En.  相似文献   

17.
The mes-metencephalic boundary (isthmus) has been suggested to act as an organizer in the development of the optic tectum. Pax-5 was cloned as a candidate for regulator of the organizing center. Isthmus-specific expression of Pax-5 and analogy with the genetic cascade in Drosophila suggest that Pax-5 may be at a higher hierarchical position in the gene regulation cascade of tectum development. To examine this possibility, a gain-of-function experiment on Pax-5 was carried out. In ovo electroporation on E2 chick brain with the eucaryotic expression vector that encodes chick Pax-5 cDNA was used. Not only was a considerable amount of Pax-5 expressed ectopically in the transfected brain, but irregular bulging of the neuroepithelium was induced in the diencephalon and mesencephalon. At Pax-5 misexpressing sites, uptake of BrdU was increased. Histological examination of E7 transfected brain revealed that Pax-5 caused transdifferentiation of diencephalon into the tectum-like structure. In the bulges of the E7 mesencephalon, differentiation of laminar structure was repressed when compared to the normal side. In transfected embryos, En-2, Wnt-1 and Fgf8 were up-regulated ectopically, and Otx2 was down-regulated in the diencephalon to mesencephalon. Moreover, Ephrin-A2, which is expressed specifically in the tectum with a gradient highest at the caudal end, is suggested to be involved in pathfinding of the retinal fibers, and was induced in the bulges. When the mouse Fgf8 expression vector was electroporated, Pax-5 and chick Fgf8 were also induced ectopically. These results suggest that Pax-5, together with Fgf8, hold a higher position in the genetic hierarchy of the isthmus organizing center and regulate its activity.  相似文献   

18.
Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, whereas FGF8a can promote midbrain development. In this study we used a chick electroporation assay and in vitro mouse brain explant experiments to compare the activity of FGF17b and FGF18 to FGF8a and FGF8b. First, FGF8b is the only protein that can induce the r1 gene Gbx2 and strongly activate the pathway inhibitors Spry1/2, as well as repress the midbrain gene Otx2. Consistent with previous studies that indicated high level FGF signaling is required to induce these gene expression changes, electroporation of activated FGFRs produce similar gene expression changes to FGF8b. Second, FGF8b extends the organizer along the junction between the induced Gbx2 domain and the remaining Otx2 region in the midbrain, correlating with cerebellum development. By contrast, FGF17b and FGF18 mimic FGF8a by causing expansion of the midbrain and upregulating midbrain gene expression. This result is consistent with Fgf17 and Fgf18 being expressed in the midbrain and not just in r1 as Fgf8 is. Third, analysis of gene expression in mouse brain explants with beads soaked in FGF8b or FGF17b showed that the distinct activities of FGF17b and FGF8b are not due to differences in the amount of FGF17b protein produced in vivo. Finally, brain explants were used to define a positive feedback loop involving FGF8b mediated upregulation of Fgf18, and two negative feedback loops that include repression of Fgfr2/3 and direct induction of Spry1/2. As Fgf17 and Fgf18 are co-expressed with Fgf8 in many tissues, our studies have broad implications for how these FGFs differentially control development.  相似文献   

19.
20.
The mes-metencephalic boundary (isthmus) works as an organizer for the tectum, and the organizing molecule may be Fgf8. The region where Otx2, En1, and Pax2 are expressed overlappingly may differentiate into the mesencephalon. The di-mesencephalic and mes-metencephalic boundaries are determined by repressive interaction of Pax6 and En1/Pax2 and of Otx2 and Gbx2, respectively. The optic tectum is a visual center in lower vertebrates. The tectum and the retina should be regionalized and be positionally specialized for the proper retinotopic projection. Gradient of En2 plays a crucial role in rostrocaudal polarity formation of the tectum. En2 confers caudal characteristics of the retina by inducing ephrinA2 and A5, which are the repellant molecules for the growth cones of temporal retinal ganglion cells. Grg4 antagonizes the isthmus-related genes, and is involved in the formation of di-mesencephalic boundary and tectal polarity formation at an early phase of development. Then, Grg4 plays a role in tectal laminar formation by controlling the migration pathway. Migration pathway of tectal postmitotic cells changes after E5. The late migratory cells split the early migratory neurons to form laminae h-j of SGFS. Grg4 is expressed in the ventricular layer after E5, and forces postmitotic cells to follow the late migratory pathway, though retinal fibers terminate at laminae a-f of SGFS. Misexpression of Grg4 disrupts the lamina g, and in such tecta retinal arbors invade deep into the tectal layer, indicating that lamina g is a nonpermissive lamina for the retinal arbors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号