首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Penicillium expansum lipase (PEL) was used to catalyze biodiesel production from corn oil in [BMIm][PF6]1 (an ionic liquid, IL) and tert-butanol. Both systems were optimized in terms of MeOH/oil molar ratio, reaction temperature, enzyme loading, solvent volume, and water content. The high conversion obtained in the IL (86%) as compared to that in tert-butanol (52%) demonstrates that the IL is a superior solvent for PEL-catalyzed biodiesel production. Poor yields were obtained in a series of hydrophilic ILs. Addition of salt hydrates affected biodiesel production predominantly through the specific ion (Hofmeister) effect. The impact of methanol on both activity and stability of PEL in the IL and in hexane was investigated, in comparison to the results obtained by two commonly used lipases, Novozym 435 and Lipozyme TLIM. The results substantiate that while different lipases show different resistance to methanol in different reaction systems, PEL is tolerant to methanol in both systems.  相似文献   

2.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

3.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

4.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.  相似文献   

5.
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60 °C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.  相似文献   

6.
Pseudo-two phase partitioning bioreactor (P-TPPB) was newly proposed as an extension of the application of TPPB to bioprocesses in which hydrophilic substrates and/or products are involved. The feasibility of P-TPPB was demonstrated in enzymatic biodiesel production, where methanol completely inhibits the enzymes. Unlike conventional TPPB, the P-TPPB comprises a hydrophobic first phase (soybean oil) and hydrophilic second phase. n-Pentanol was found to be the optimum for the second phase, since P-TPPB containing n-pentanol showed the greatest total biodiesel conversion and highest fatty acid methyl ester content. The enzyme was repeatedly used to produce biodiesel in P-TPPB, while maintaining its activity at over 95 % relative to that of the intact enzyme.  相似文献   

7.
The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme–substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.  相似文献   

8.
Yücel Y 《Bioresource technology》2011,102(4):3977-3980
In the present work, microbial lipase from Thermomyces lanuginosus was immobilized by covalent binding onto olive pomace. Immobilized support material used to produce biodiesel with pomace oil and methanol. The properties of the support and immobilized derivative were evaluated by scanning electron microscopy (SEM). The maximum immobilization of T. lanuginosus was obtained as 18.67 mg/g support and the highest specific activity was 10.31 U/mg protein. The properties of immobilized lipase were studied. The effects of protein concentration, pH and buffer concentration on the immobilization and lipase activity were investigated. Biodiesel production using the immobilized lipase was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 93% at 25 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

9.

Background

The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel.

Results

The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield.

Conclusions

The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow-through bioreactor system.  相似文献   

10.
《Process Biochemistry》2010,45(7):1192-1195
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex procedures of isolation, purification and immobilization required for the preparation of immobilized lipase. It has been demonstrated that Rhizopus oryzae IFO 4697 whole cell could catalyze the methanolysis of renewable oils for biodiesel production effectively and glutaraldehyde (GA) cross-linking treatment on whole cell catalyst could improve its stability in the repeated uses. The catalytic performance of cells with GA cross-linking treatment was studied systematically in this paper. The results showed that the treated cells expressed higher methanol tolerance, and high catalytic activity could be maintained with higher ratio of methanol to oil; the operational stability of whole cell catalyst and methanol utilization rate were also considered in optimization of methanol addition strategy. A novel methanol addition strategy was proposed, with which the reaction time could be shortened significantly and a biodiesel yield of 94.1% could be obtained within 24 h reaction; it was also found that with this methanol addition strategy, GA cross-linked whole cell expressed rather good operational stability; the reason for stability improvement was also investigated and should be attributed to less lipase leakage.  相似文献   

11.
The feasibility of using the commercial immobilized lipase from Candida antarctica (Novozyme 435) to synthesize biodiesel from sunflower oil in a solvent-free system has been proved. Using methanol as an acyl acceptor and the response surface methodology as an optimization technique, the optimal conditions for the transesterification has been found to be: 45 oC, 3% of enzyme based on oil weight, 3:1 methanol to oil molar ratio and with no added water in the system. Under these conditions, >99% of oil conversion to fatty acid methyl ester (FAME) has been achieved after 50 h of reaction, but the activity of the immobilized lipase decreased markedly over the course of repeated runs. In order to improve the enzyme stability, several alternative acyl acceptors have been tested for biodiesel production under solvent-free conditions. The use of methyl acetate seems to be of great interest, resulting in high FAME yield (95.65%) and increasing the half-life of the immobilized lipase by about 20.1 times as compared to methanol. The reaction has also been verified in the industrially feasible reaction system including both a batch stirred tank reactor and a packed bed reactor. Although satisfactory performance in the batch stirred tank reactor has been achieved, the kinetics in a packed bed reactor system seems to have a slightly better profile (93.6 ± 3.75% FAME yield after 8–10 h), corresponding to the volumetric productivity of 48.5 g/(dm3 h). The packed bed reactor has operated for up to 72 h with almost no loss in productivity, implying that the proposed process and the immobilized system could provide a promising solution for the biodiesel synthesis at the industrial scale.  相似文献   

12.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

13.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

14.
The present work examines the production of a biodiesel from a non-edible oil namely honne oil (Calophyllum inophyllum linn). A three stage process viz., pre-treatment, alkali catalyzed transesterification and post treatment adopted for the production is discussed. The reaction parameters such as methanol to oil molar ratio, catalyst concentration, temperature and time have been optimized for the production of biodiesel. The yield of biodiesel from the honne oil under the optimized conditions is found to be 89%.  相似文献   

15.
The use of alternative fuels for the mitigation of ecological impacts by use of diesel has been focus of intensive research. In the present work, algal oils extracted from cultivated biomass of Cladophora sp., Spirogyra sp. and Oedogonium sp. were evaluated for the lipase-mediated synthesis of fatty acid monoalkyl esters (FAME, biodiesel). To optimize the transesterification of these oils, different parameters such as the alkyl group donor, reaction temperature, stirring time and oil to alcohol ratio were investigated. Four different alcohols i.e. methanol, ethanol, n-propanol and n-butanol were tested as alkyl group donor for the biosynthesis FAME and methanol was found to be the best. Similarly, temperature 50 C and stirring time of 6 h were optimized for the transesterification of oils with methanol. The maximum biodiesel conversions from Cladophora (75.0%), Spirogyra (87.5%) and Oedogonium (92.0%) were obtained when oil to alcohol ratio was 1: 8.  相似文献   

16.
Commercially available steapsin lipase was immobilized on macroporous polymer beads (IB-350) and further investigated for biodiesel production under solvent free conditions. The fatty acid methyl ester (biodiesel) synthesis was carried out by the methanolysis of fresh and used cooking sunflower oil. The enzymatic reaction for biodiesel synthesis was optimized with various reaction parameters and the obtained reaction conditions were 1: 6 molar ratio (oil: methanol), 50 mg biocatalyst and 20% water content at 45°C for 48 h under solvent free conditions. It was observed that 94% of biodiesel was produced under the optimized reaction conditions. The four step addition of methanol at the interval of 12 h was found to be more effective. Moreover the biocatalyst was effectively reused for four consecutive recycles and was appreciably stable for 90 days. The results obtained highlight potential of immobilized steapsin lipase for biodiesel production.  相似文献   

17.
Lipase-catalyzed alcoholysis of soybean oil deodorizer distillate (SODD) for biodiesel production was studied. During this system both free fatty acids and glycerides could be converted to biodiesel simultaneously. tert-Butanol has been adopted as the reaction medium, in which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated completely. There was no obvious loss in lipase activity even after being repeatedly used for 120 cycles. Fine-pored silica gel and 3 Å molecular were found to be effective to control by-product water concentration and much higher biodiesel yield could be achieved with those adsorbents present in the reaction system. The highest biodiesel yield of 97% could be achieved with 3 Å molecular sieve as the adsorbent.  相似文献   

18.
Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol. Enzyme immobilization led to higher stabilities and conversion values as compared to what was obtained by the free enzyme. Furthermore, the silica structure had a significant effect on stability and catalytic performance of immobilized enzymes. In examining the reusability of the biocatalysts, the immobilized lipases still retained approximately 55% of their initial conversion capability following 5 times of reuse.  相似文献   

19.
Performance of a new lipase from Novozymes (Callera Trans L) was studied for fatty acid methylesters (FAMEs) production. In order to reduce the costs of the industrial enzymatic biodiesel production process, the enzyme was used in its soluble form instead of the common immobilized preparations. Cost reduction was also achieved by using crude (non-degummed) soybean oil as a cheaper raw material. The effect of water content during Callera Trans L-catalyzed FAMEs production was explored from evaluation of free fatty acids (FFAs), tri- di or monoacylglycerides (TAGs, DAGs, MAGs) variation during 24 h reaction. An excellent 96% FAMEs release was achieved when low (3–5%) water concentrations were used in the conversion of crude soybean oil. Time course HPLC analysis of the reaction products suggests that the soluble enzyme proceeds through a mechanism of methylester formation based on a first hydrolysis step that releases FFAs, DAGs or MAGs, followed by esterification of FFAs with methanol for FAMEs production.  相似文献   

20.
In this study, production of biodiesel from low cost raw materials, such as rice bran and dewaxed-degummed rice bran oil (DDRBO), under supercritical condition was carried out. Carbon dioxide (CO2) was employed as co-solvent to decrease the supercritical temperature and pressure of methanol. The effects of different raw materials on the yield of biodiesel production were investigated. In situ transesterification of rice bran with supercritical methanol at 30 MPa and 300 °C for 5 min was not a promising way to produce biodiesel because the purity and yield of fatty acid methyl esters (FAMEs) obtained were 52.52% and 51.28%, respectively. When DDRBO was reacted, the purity and yield were 89.25% and 94.84%, respectively. Trans-FAMEs, which constituted about 16% of biodiesel, were found. They were identified as methyl elaidate [trans-9], methyl linoleaidate [trans-9, trans-12], methyl linoleaidate [cis-9, trans-12], and methyl linoleaidate [trans-9, cis-12]. Hydrocarbons, which constituted about 3% of the reaction product, were also detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号