首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial heterogeneity of photosynthesis and calcification of single polyps of the coral Galaxea fascicularis was investigated. Photosynthesis was investigated with oxygen microsensors. The highest rates of gross photosynthesis (Pg) were found on the tissue covering the septa, the tentacles, and the tissues surrounding the mouth opening of the polyp. Lower rates were found on the tissues of the wall and the coenosarc. Calcification was investigated by radioactive tracers. The incorporation pattern of 45Ca and 14C in the corallites was imaged with use of a Micro-Imager. The -images obtained showed that the incorporation of the radioactive tracers coincided with the Pg distribution pattern with the highest incorporation rates found in the corallite septa. Thus, the high growth rate of the septa is supported by the high rates of Pg by the symbiont in the adjacent tissues. The total incorporation rates were higher in light than in dark, however, the distribution pattern of the radioisotope incorporation was not affected by illumination. This further emphasizes the close relation between calcification and photosynthesis.  相似文献   

2.
The geographic range of the coral, Plesiastrea versipora (Lamarck, 1816), extends into temperate waters outside the southern limit for hermatypic corals. In the present study, calcification in Plesiastrea collected from Port Phillip Bay, Victoria was examined over the coral's normal annual temperature range (10-21 °C), which is well below the normal optimum for coral calcification in tropical corals (25-28 °C). Calcification rate in Plesiastrea was considerably lower than in reef corals, but showed a similar pattern in temperature responses, with a trend towards higher rates at ∼18 °C. The light/dark calcification ratio was markedly lower than that in tropical corals. Autoradiography showed that calcification occurred primarily by deposition of calcium carbonate at the upper surfaces of the septo-costae. Scanning electron microscopy (SEM) showed that skeletal deposition in Plesiastrea had a temperature-dependent diel pattern. In the light, calcium carbonate was deposited as small spheroidal crystals and, at higher temperatures, small needle-shaped crystals. In the dark, calcium carbonate deposition appeared to be in the form of an amorphous sheet-like cementation. Compared with other scleractinian corals, calcification rate in Plesiastrea was relatively slow and showed different patterns of skeletal deposition.  相似文献   

3.
This study aimed at investigating changes in feeding rates of three scleractinian coral species (Stylophora pistillata, Turbinaria reniformis and Galaxea fascicularis) between control (26 °C) and short-term stress conditions (31 °C), and to assess the effect of feeding on the photosynthetic efficiency of the corals. Feeding rates varied according to the feeding effort of the corals, itself depending on the environmental conditions. Indeed, S. pistillata significantly decreased its feeding rates at 31 °C, while rates of T. reniformis and G. fascicularis were increased between 26 and 31 °C. Independently of the feeding rates, food supply helped in preventing damage to the photosynthetic apparatus of the zooxanthellae. Indeed, starved corals from the three species showed significant decrease in both the electron transport rates and in the photosynthetic rates, following a loss in the amount of chlorophyll and experiencing photoinhibition of the photosystem II. However, no bleaching was observed in heated fed corals, with no decrease in their photosynthetic efficiency or performance.  相似文献   

4.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

5.
The rate of calcification in the scleractinian coral Galaxea fascicularis was followed during the daytime using 45Ca tracer. The coral began the day with a low calcification rate, which increased over time to a maximum in the afternoon. Since the experiments were carried out under a fixed light intensity, these results suggest that an intrinsic rhythm exists in the coral such that the calcification rate is regulated during the daytime. When corals were incubated for an extended period in the dark, the calcification rate was constant for the first 4 h of incubation and then declined, until after one day of dark incubation, calcification ceased, possibly as a result of the depletion of coral energy reserves. The addition of glucose and Artemia reduced the dark calcification rate for the short duration of the experiment, indicating an expenditure of oxygen in respiration. Artificial hypoxia reduced the rate of dark calcification to about 25% compared to aerated coral samples. It is suggested that G. fascicularis obtains its oxygen needs from the surrounding seawater during the nighttime, whereas during the day time the coral exports oxygen to the seawater.  相似文献   

6.
申玉春  杨小东  刘丽  金磊 《生态学报》2015,35(2):306-312
澄黄滨珊瑚、大管孔珊瑚和丛生盔形珊瑚排卵前后分别采集珊瑚小穗,在实验室条件下进行为期60 d的养殖,观察其生长特性,结果表明:3种珊瑚排卵前后骨骼密度变化在1.541—2.137 g/cm3之间,差异不显著。3种珊瑚小穗的生长率表现出相对一致的变化趋势,同一规格珊瑚小穗排卵前期生长率明显高于排卵后期;同一时期大规格珊瑚小穗生长率明显高于小规格珊瑚小穗,而且养殖中后期生长较快,养殖前期生长较慢,差异显著(P0.05)。澄黄滨珊瑚小穗边缘组织延伸度排卵后期大于排卵前期,大管孔珊瑚小穗边缘组织延伸度排卵前期大于排卵后期,以上两种珊瑚的小规格珊瑚小穗与大规格珊瑚小穗组织延伸度相当。随着养殖时间的持续,丛生盔形珊瑚小穗螅体增殖速率加快,各养殖阶段螅体数差异显著(P0.05),珊瑚小穗规格和养殖季节对其小穗螅体增殖数量没有显著影响。3种珊瑚小穗生长指标间多呈显著正相关,仅大管孔珊瑚小穗初始直径、初始重量与组织延伸度间,以及丛生盔形珊瑚小穗初始重量与初始螅体数量、生长率间相关性不明显。  相似文献   

7.
Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hypothesis, we measured the short-term effects of zooplankton feeding on light and dark calcification rates of the scleractinian coral Galaxea fascicularis (n = 4) at oxygen saturation levels ranging from 13 to 280%. Significant main and interactive effects of oxygen, heterotrophy and light on calcification rates were found (three-way factorial repeated measures ANOVA, p<0.05). Light and dark calcification rates of unfed corals were severely affected by hypoxia and hyperoxia, with optimal rates at 110% saturation. Light calcification rates of fed corals exhibited a similar trend, with highest rates at 150% saturation. In contrast, dark calcification rates of fed corals were close to zero under all oxygen saturations. We conclude that oxygen exerts a strong control over light and dark calcification rates of corals, and propose that in situ calcification rates are highly dynamic. Nevertheless, the inhibitory effect of heterotrophy on dark calcification appears to be oxygen-independent. We hypothesize that dark calcification is impaired during zooplankton feeding by a temporal decrease of the pH and aragonite saturation state of the calcifying medium, caused by increased respiration rates. This may invoke a transient reallocation of metabolic energy to soft tissue growth and organic matrix synthesis. These insights enhance our understanding of how oxygen and heterotrophy affect coral calcification, both in situ as well as in aquaculture.  相似文献   

8.
The relation between irradiance, skeletal growth and net photosynthesis was studied for the scleractinian coral Galaxea fascicularis to provide experimental evidence for mediation of light-enhanced calcification through photosynthesis. The hypothesis was tested that skeletal growth and photosynthesis are linearly correlated.A long-term experiment was performed in a closed-circuit aquarium system, in which four series of nine nubbins (single polyp clones of a coral colony) of Galaxea fascicularis were exposed to four light treatments (10L:14D): 144 W T8 fluorescent lighting providing an irradiance of 68 µE/m2/s and 70, 250 and 400 W Metal Halide lighting providing an irradiance of 38 µE/m2/s, 166 µE/m2/s and 410 µE/m2/s, respectively. Growth of these nubbins was measured as buoyant weight at different time intervals in a 294 day experiment. A light-saturation curve for photosynthesis was measured in a respirometric flow cell using a 54 week Galaxea fascicularis colony grown at 60 µE/m2/s.No saturation of net photosynthesis of Galaxea fascicularis was found at the irradiances tested. The specific growth rate (µ, in day- 1) of the coral nubbins increased with irradiance. Whereas irradiance varied 11-fold (38 to 410 µE/m2/s), buoyant weight (increase after 294 days) increased 5.7 times (2243 to 12374 mg), specific growth rate (1-294 days) increased 1.6 times (0.0103 to 0.0161 day- 1), while net photosynthetic rate increased 8.9 times (0.009 µmol O2/min/cm2 to 0.077 µmol O2/min/cm2). The increase of specific growth rate with irradiance was less than expected based on the increase in net photosynthetic rate with irradiance. This discrepancy between potential energy produced in photosynthesis and energy used for skeletal growth indicates that skeletal growth is not limited by photosynthetic potential at high irradiance levels.  相似文献   

9.
The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.  相似文献   

10.
Exogenous food can increase protein levels of coral host tissue, zooxanthellae densities, chlorophyll (chl) concentrations and rates of photosynthesis and is thought to play an important role in the resilience of bleached corals. There is however no information about the effect of heterotrophy on the bleaching susceptibility of corals under elevated temperature conditions. This study investigates potential interactions between food availability, basal metabolic functions (photosynthesis and respiration), energy status (lipid concentrations), total protein concentrations and the bleaching susceptibility (loss of chl and/or zooxanthellae) of the scleractinian corals Stylophora pistillata (Esper) and Galaxea fascicularis (Linnaeus) in response to elevated temperature (daily temperature rises of 3-4 °C) over 15 days. Feeding experiments were carried out in which the corals were either fed daily with zooplankton or starved. Compared to fed corals, starvation of both species resulted in a significant decrease in daily photosynthetic oxygen evolution over time. Gross (Pg) and net (Pn) photosynthetic production of starved corals of both species between 10:00-11:00 hrs had declined by ~50% at day 15 while there were no marked changes in Pg and Pn of fed corals. After 15 days, starved S. pistillata contained significantly lower zooxanthellae densities, lipid and protein concentrations than fed corals. Starved G. fascicularis also displayed a decrease in zooxantllae densities which was accompanied by a significant decline in algal chl concentrations. Contrary to S. pistillata, feeding treatment had no effect on the lipid concentrations of G. fascicularis. Total protein concentrations however were significantly lower in straved than in fed G. fascicularis. Furthermore, starvation resulted in a significant decrease in respiration of S. pistillata during the last four days of the experiment while treatment had no effect on the respiration rates of G. fascicularis. Overall the oxygen consumption of S. pistillata of both treatments was about 39-67% higher than the respiration of G. fascicularis indicating that low metabolic rates may have allowed starved G. fascicularis to conserve energy reserves over the course of the experiment. The combined results reveal a strong positive relationship between food availability, sustained photosynthetic activity and reduced loss in pigmentation of both species under elevated temperature conditions.  相似文献   

11.
Calcification processes are largely unknown in scleractinian corals. In this study, live confocal imaging was used to elucidate the spatiotemporal dynamics of the calcification process in aposymbiotic primary polyps of the coral species Acropora digitifera. The fluorophore calcein was used as a calcium deposition marker and a visible indicator of extracellular fluid distribution at the tissue-skeleton interface (subcalicoblastic medium, SCM) in primary polyp tissues. Under continuous incubation in calcein-containing seawater, initial crystallization and skeletal growth were visualized among the calicoblastic cells in live primary polyp tissues. Additionally, the distribution of calcein-stained SCM and contraction movements of the pockets of SCM were captured at intervals of a few minutes. Our experimental system provided several new insights into coral calcification, particularly as a first step in monitoring the relationship between cellular dynamics and calcification in vivo. Our study suggests that coral calcification initiates at intercellular spaces, a finding that may contribute to the general understanding of coral calcification processes.  相似文献   

12.

Background  

The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora.  相似文献   

13.
Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of seawater pH using boron isotopes should be uncompromised by short-term bleaching events.  相似文献   

14.
Temporal and spatial variation in the growth parameters skeletal density, linear extension and calcification rate in massive Porites from two nearshore regions of the northern Great Barrier Reef (GBR) were examined over a 16‐year study period. Calcification rates in massive Porites have declined by approximately 21% in two regions on the GBR ~450 km apart. This is a function primarily of a decrease in linear extension (~16%) with a smaller decline in skeletal density (~6%) and contrasts with previous studies on the environmental controls on growth of massive Porites on the GBR. Changes in the growth parameters were linear over time. Averaged across colonies, skeletal density declined over time from 1.32 g cm?3 (SE = 0.017) in 1988 to 1.25 g cm?3 (0.013) in 2003, equivalent to 0.36% yr?1 (0.13). Annual extension declined from 1.52 cm yr?1 (0.035) to 1.28 cm yr?1 (0.026), equivalent to 1.02% yr?1 (0.39). Calcification rates (the product of skeletal density and annual extension) declined from 1.96 g cm?2 yr?1 (0.049) to 1.59 g cm?2 yr?1 (0.041), equivalent to 1.29% yr?1 (0.30). Mean annual seawater temperatures had no effect on skeletal density, but a modal effect on annual extension and calcification with maxima at ~26.7 °C. There were minor differences in the growth parameters between regions. A decline in coral calcification of this magnitude with increasing seawater temperatures is unprecedented in recent centuries based on analysis of growth records from long cores of massive Porites. We discuss the decline in calcification within the context of known environmental controls on coral growth. Although our findings are consistent with studies of the synergistic effect of elevated seawater temperatures and pCO2 on coral calcification, we conclude that further data on seawater chemistry of the GBR are required to better understand the links between environmental change and effects on coral growth.  相似文献   

15.
Biochemical and histological studies on the exoskeleton of scleractinian corals had demonstrated presence of the organic matrix containing proteins, lipids and chitin. Examination at the electron microscopic level had shown that the initial phase of calcification occurred in close association with organic substances secreted by calicoblastic cells. The possibility was thereby proposed that certain organic substances induce formation of calcium carbonate crystals, presumably functioning as templates for nucleation. In search for such a molecule, biochemical and molecular analyses were initiated on protein components of the organic matrix extracted from the calcified exoskeleton of the hermatypic coral, Galaxea fascicularis and the ahermatype, Tubastrea aurea. In SDS-PAGE analyses of the extracts, one major protein and a few other minor bands were detected in each of the two species. A cDNA encoding the major protein (named galaxin) in G. fascicularis was cloned and its primary structure was deduced. It consisted mostly of tandem repeats of a unit sequence of about 30 residues, and its sequence did not exhibit significant similarity to known proteins. Preliminary characterization of the T. aurea proteins showed that two proteins bound Ca2+, and suggested that the major protein of 46 kDa was not homologous to galaxin.  相似文献   

16.
The ability to estimate coral age using soft tissue would be useful for population biology or aging studies on corals. In this study, we investigated whether telomere length can be used to estimate coral age. We applied single telomere length analysis to a colonial coral, Galaxea fascicularis, and estimated telomere lengths of specific coral chromosomes at different developmental stages. If the telomere shortened at each cell division, the telomere length of the coral would be longest in sperm and shortest in adult colonies. However, the mean telomere length of sperm, planula larvae, and polyps was approximately 4 kb, with no significant differences among the developmental stages. The telomerase restriction fragment (TRF) analysis also showed no significant difference in the mean TRF length among the developmental stages. Our results suggested that telomere length is maintained during developmental stages and that estimating the age of colonial coral based on telomere length may not be possible. However, our findings can be used to examine avoidance of aging and rejuvenation during regeneration and asexual reproduction in colonial corals.  相似文献   

17.
To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s−1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day−1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s−1, while it was significantly higher at 25 cm s−1. From 10 to 25 cm s−1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s−1.  相似文献   

18.
Edmunds PJ 《Oecologia》2005,146(3):350-364
To date, coral death has been the most conspicuous outcome of warming tropical seas, but as temperatures stabilize at higher values, the consequences for the corals remaining will be mediated by their demographic responses to the sub-lethal effects of temperature. To gain insight into the nature of these responses, here I develop a model to test the effect of increased temperature on populations of three pocilloporid corals at One Tree Island, near the southern extreme of the Great Barrier Reef (GBR). Using Seriatopora hystrix, S. caliendrum and Pocillopora damicornis as study species, the effects of temperature on growth were determined empirically, and the dynamics of their populations determined under natural temperatures over a 6-month period between 1999 and 2000 [defined as the study year (SY)]. The two data sets were combined in a demographic test of the possibility that the thermal regime projected for the southern GBR in the next 55–83 years—warmer by 3°C than the study year (the SY+3 regime), which is equivalent to 1.4°C warmer than the recent warm year of 1998—would alter coral population trajectories through the effects on coral growth alone; the analyses first were completed by species, then by family after pooling among species. Laboratory experiments showed that growth rates (i.e., calcification) varied significantly among species and temperatures, and displayed curvilinear thermal responses with growth maxima at ∼27.1°C. Based on these temperature-growth responses, the SY+3 regime is projected to: (1) increase annualized growth rates of all taxa by 24–39%, and defer the timing of peak growth from the summer to the autumn and spring, (2) alter the intrinsic rate of population growth (λ) for S. hystrix (λ decreases 26%) and S. caliendrum (λ increases 5%), but not for P. damicornis, and (3) have a minor effect on λ (a 0.3% increase) for the Pocilloporidae, largely because λ varies more among species than it does between temperatures. Ten-year population projections suggest that the effects of a sub-lethal increase in temperature (i.e., the SY+3 regime) are relatively small compared to the interspecific differences in population dynamics, but nevertheless will alter the population size and increase the relative abundance of large colonies at the expense of smaller colonies for all three species, as well as the Pocilloporidae. These effects may play an important role in determining the nuances of coral population structure as seawater warms, and their significance may intensity if the coral species pool is depleted of thermally sensitive species by bleaching.  相似文献   

19.
Recent mortality outbreaks in marine ecosystems have been linked to elevated seawater temperatures associated with global climate change. Acquisition of thermotolerance data is essential, not only to determine the role of temperature in mortality outbreaks, but also to predict consequences of global warming. In the NW Mediterranean region, elevated seawater temperatures during the summer periods of 1999 and 2003 caused mass mortality of the Mediterranean red coral, Corallium rubum (L. 1758). Experiments testing the upper thermal limits of this species were carried out in aquaria using samples collected from populations from 11 to 40 m depth in the Marseilles region (NW Mediterranean, France). Samples were subjected to temperature treatments between 18 and 30 °C with an exposure time of 5 and 25 days. Three biological response variables were used to evaluate effects of the treatments: coenenchyme necrosis, polyp activity and calcification rates (45Ca incorporation in calcareous skeleton). The results showed that exposure to 24 °C for 24 days caused a beginning of mortality only for the deep population, and to 25 °C for between 9 and 14 days caused mass mortality of both sample groups. The response variable results indicate that samples from the shallow population had greater thermotolerance of elevated seawater temperatures than the deep samples. The shallow samples showed greater polyp activity and higher calcification rate with a delayed necrosis response than the deep samples. These initial thermotolerance results combined with both hydrographic models and seawater temperature monitoring are the first step towards developing predictive tools for anticipating future effects of climate change in the red coral populations.  相似文献   

20.
 The uptake of 45Ca and/or 14C by the skeleton of coral colonies has been commonly used to investigate the processes of calcification. This study reports the differential uptake of these tracers within different regions of the skeleton and tissues of individual corallites and polyps of the hermatypic coral Galaxea fascicularis. Incubation in 45Ca in the light resulted in 80 percent of the 45Ca taken up being deposited in the skeleton. Autoradiography of transverse and longitudinal slices of freeze-substituted polyps and corallites showed that in the light 45Ca was incorporated into the exsert septa, the outside of the thecal walls of the corallite and the inner edges of the septa. Incorporation did not occur in the costae. The radioactivity in the skeleton was considerably greater than in the tissues. In the dark, or in the presence of the photosynthetic inhibitor Diuron, 45Ca was taken up by the exsert septa and was patchily distributed in the corallite walls which suggests that it was not a result of isotopic exchange. The differential incorporation of 45Ca onto the exsert septa was confirmed by scintillation counting. Negligible radioactivity remained in the extrathecal coelenteron after a brief 5 min rinse in non-radioactive seawater. Only 0.1% of 14C taken up in the light was incorporated into the skeleton and this was confirmed by autoradiography. In the presence of Diuron or in the dark, very little 14C was incorporated into tissues or skeleton and in autoradiographs was either not evident in the skeleton or the distribution was similar to that seen in autoradiographs of 45Ca uptake. These results show that the deposition of 45Ca, and therefore calcium carbonate, occurs at specific loci on the skeleton of a corallite. In the dark, deposition occurs specifically at the growing points of the corallite. Differential deposition of calcium carbonate within individual corallites has not been previously reported. Accepted: 27 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号