首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】挖掘梨小食心虫Grapholita molesta幼虫中肠中高表达消化酶和解毒酶基因,为今后研究以肠道为靶标的新型农药和转基因作物提供理论依据。【方法】基于梨小食心虫4龄幼虫中肠转录组高通量测序数据的FPKM值,筛选高表达基因,进行GO功能注释和KEGG通路富集分析,并使用BLAST软件进行比对筛选高表达的消化酶和解毒酶基因,利用MEGA对这些高表达的消化酶和解毒酶及其他鳞翅目昆虫的同源蛋白进行系统发育分析。利用qRT-PCR技术对梨小食心虫幼虫不同龄期中肠中的高表达代表性消化酶和解毒酶基因表达量进行定量分析和验证。【结果】在GO数据库中注释了103 677个在梨小食心虫4龄幼虫中肠中高表达基因,包括细胞组分、分子功能和生物学进程三大类功能共41个分支。KEGG通路分析表明,10 846个高表达基因参与了5类生化代谢通路。筛选到具有完整开放阅读框的消化酶基因17个[5个胰蛋白酶(trypsin, TRY)基因、3个氨肽酶(aminopeptidase, APN)基因和9个羧肽酶(carboxypeptidase, CP)基因]和解毒酶基因32个[11个谷胱甘肽S-转移酶(glutathione S-transferase, GST)基因、13个细胞色素P450(cytochrome P450, CYP450)基因和8个羧酸脂酶(carboxylesterase, CarE)基因]。系统发育分析结果表明,梨小食心虫的消化酶同源聚类分支较为分散,GSTs和CYP450s分支聚类较为集中,但都至少与1个鳞翅目昆虫同源蛋白聚在一支。qRT-PCR验证结果表明,消化酶和解毒酶基因在不同龄期梨小食心虫幼虫中肠中的表达量差异显著,表达量均在4龄幼虫期最高。【结论】本研究成功筛选和验证部分梨小食心虫幼虫中肠中高表达的消化酶和解毒酶基因,明确其与鳞翅目其他昆虫同源蛋白的进化关系。研究结果为鳞翅目其他近缘昆虫的转录组分析和以肠道为靶标的害虫防治提供了参考。  相似文献   

2.
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one‐dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease‐encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin‐like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin‐like gene McSP34. The expression of the trypsin‐like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources. Published 2010 Wiley Periodicals, Inc.  相似文献   

3.
Feeding of Helicoverpa armigera larvae on semi-synthetic diet containing Soybean trypsin inhibitor (STI) resulted in disappearance of STI sensitive protease in salivary and midgut protease extract. This might be due to in situ inhibition by dietary STI. STI was largely degraded within 1 h of incubation with total salivary protease (1:1). Degradation was relatively low in midgut proteases. STI interacting proteins were isolated from saliva and midgut extracts of larvae fed on STI supplemented diet using affinity column. Most of the isolated proteins showed caseinolytic activity in zymogram. Denovo sequencing data of seven different peptides selected from trypsin digested total protein showed similarity to chymotrypsinogen, serine protease, aminopeptidase N, peroxidase, hypothetical protein and muscle specific protein.  相似文献   

4.
5.
Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.  相似文献   

6.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

7.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5′ and 3′ flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   

8.
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.  相似文献   

9.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5 and 3 flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   

10.
The distribution of digestive proteinases in either the anterior and posterior midgut or between the midgut epithelium and ectoperitrophic and endo-peritrophic spaces in the midgut were examined in the European corn borer, Ostrinia nubilalis. Trypsin, chymotrypsin, elastase, and aminopeptidase activities were the same in the anterior and posterior halves of the midgut. Of the total aminopeptidase activity, 95% was located in the midgut epithelium, and 90% of the trypsin, 97% of chymotrypsin, and 93% of the elastase activity were found in the midgut lumen. Trypsin, measured by hydrolysis of benzoyl-L-arginine ethyl ester, and chymotrypsin levels were significantly higher in the ectoperitrophic space compared to the endoperitrophic space. Digestion in the midgut is proposed to be sequential with tryptic digestion occurring in the endoperitrophic space. Ingested protein is digested further in the ectoperitrophic space by the action of elastase, chymotrypsin, and a second trypsin. Final digestion occurs by an intracellular aminopeptidase. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.  相似文献   

13.
Density dependent responses of 4th, 5th and 6th instar gypsy moth larvae were studied at the level of larval mass, midgut loading and activities of three digestive enzymes (alpha-amylase, trypsin and leucine aminopeptidase). High density significantly reduced larval mass while midgut loading (expressed as relative midgut mass) did not change except in the 5th instar where it was increased at high density. Specific amylase and leucine aminopeptidase activities were not affected by crowding. Specific trypsin activity was on average higher in crowded than in isolated larvae. High density also affected the correlations between midgut protein content and activities of two proteolytic enzymes suggesting differences in regulatory mechanisms of insect digestion. The importance of these changes for survival under stressful conditions is discussed.  相似文献   

14.
The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106kDa (gel filtration) and 55kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, AβNA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3, Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species.  相似文献   

15.
We investigated the structure, organization, and developmental regulation of soybean Kunitz trypsin inhibitor genes. The Kunitz trypsin inhibitor gene family contains at least 10 members, many of which are closely linked in tandem pairs. Three Kunitz trypsin inhibitor genes, designated as KTi1, KTi2, and KTi3, do not contain intervening sequences, and are expressed during embryogenesis and in the mature plant. The KTi1 and KTi2 genes have nearly identical nucleotide sequences, are expressed at different levels during embryogenesis, are represented in leaf, root, and stem mRNAs, and probably do not encode proteins with trypsin inhibitor activity. By contrast, the KTi3 gene has diverged 20% from the KTi1 and KTi2 genes, and encodes the prominent Kunitz trypsin inhibitor found in soybean seeds. The KTi3 gene has the highest expression level during embryogenesis, and is also represented in leaf mRNA. All three Kunitz trypsin inhibitor genes are regulated correctly in transformed tobacco plants. Our results suggest that Kunitz trypsin inhibitor genes contain different combinations of cis-control elements that program distinct qualitative and quantitative expression patterns during the soybean life cycle.  相似文献   

16.
17.
Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control.  相似文献   

18.
The cDNA for bovine spleen trypsin inhibitor (SI), a homologue of bovine pancreatic trypsin inhibitor (BPTI), including the natural mammalian presequence was expressed in tobacco using Agrobacterium tumefaciens-mediated transformation. Stable expression required the N-terminal targeting signal presequence although subcellular localization was not proven. SI was found to exist as two forms, one coinciding with authentic BPTI on western blots and the second marginally larger due to retention of the C-terminal peptide. Both were retained on a trypsin-agarose affinity gel and had inhibitory activity. Newly emergent leaves contained predominantly the large form whereas senescent leaves had little except the fully processed form present. Intermediate-aged leaves showed a gradual change indicating that a slow processing of the inhibitor peptide was occurring. The stability of SI was shown by the presence of protein at high levels in completely senescent leaves. Modifications to the cDNA (3 and 5 changes and minor codon changes) resulted in a 20-fold variation in expression. Expression of modified SI in transgenic tobacco leaves at 0.5% total soluble protein reduced both survival and growth of Helicoverpa armigera larvae feeding on leaves from the late first instar. In larvae surviving for 8 days, midgut trypsin activity was reduced in SI-tobacco fed larvae, while chymotrypsin activity was increased. Activities of leucine aminopeptidase and elastase-like chymotrypsin remained unaltered. The use of SI as an insect resistance factor is discussed.  相似文献   

19.
《Insect Biochemistry》1990,20(8):839-847
Acetylglucosaminidase, amylase, cellobiase and maltase are more active in anterior midgut cells, whereas aminopeptidase, carboxypeptidase and trypsin are more active in posterior midgut cells of Tenebrio molitor larvae. Differential centrifugation of midgut homogenates prepared in saline (or mannitol) isotonic buffered solutions revealed that aminopeptidase is associated with membranes, which occur in subcellular fractions displaying many microvilli. Carboxypeptidase, trypsin and the carbohydrases are mostly found in the soluble fraction, although significant amounts sediment together with cell vesicles. Data on differential calcium precipitation of midgut homogenates and on partial ultrasound disruption of midgut tissue suggest that aminopeptidase is a microvillar enzyme and that the digestive enzymes recovered in the soluble fraction of cells are loosely bound to the cell glycocalyx. About 5% of the non-absorbable dye amaranth fed to T. molitor larvae remains in the midgut tissue after rinsing. Most dye was recovered in the soluble fraction of midgut cells. This provided further support for the hypothesis that the digestive enzymes found in the soluble fraction are actually extracellular and that the true intracellular enzymes are those associated with cell vesicles. The results suggest that the carbohydrases are secreted by exocytosis from the anterior midgut and carboxypeptidase and trypsin from the posterior midgut.  相似文献   

20.
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号