首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Changes in seed quality (assessed by potential longevity, i.e.the value of the seed lot constant K1 of the seed viabilityequation) in three contrasting cultivars of rice (Oryza sativaL.) were monitored during seed development and maturation intwo temperature regimes, viz 28/20°C and 32/24°C (12/12h), provided by controlled environments. Mass maturity (definedas the end of the seed-filling phase) varied only between 18and 20 d after 50% anthesis. In five of the six treatment combinationsmaximum potential longevity was not achieved until 12-19 d aftermass maturity. In contrast, the maximum potential longevityof seeds of a japonica rice cultivar produced in the warmerregime was obtained in the first harvest after mass maturity.After mass maturity, the potential longevity of the japonicarice seed lots produced in the warmer environment was much lessthan that for the cooler environments. Maximum potential longevitywas also consistently greater in the cooler than the warmerregime for the two indica cultivars, although the differencein K1 was small (0·3-0·5). The deleterious effectof increase in temperature on seed quality development was notdetected until after mass maturity. Maximum potential longevityin the cooler regime was greatest in the glutinous indica (K1= 3·9) and least in the japonica cultivar (K1 = 3·1).It is concluded that the japonica cultivar is not as well adaptedto warm seed production regimes as the indica cultivars. Consequently,subject to confirmation, this research suggest that the seedproduction of japonica cultivars for long-term genetic conservationshould be undertaken, whenever possible, in warm temperate environments.Copyright1993, 1999 Academic Press Oryza sativa L., rice, genebanks, seed development, seed storage, seed longevity, temperature  相似文献   

2.
Changes in soluble carbohydrates and heat-stable proteins havebeen examined in relation to the acquisition of desiccationtolerance and/or potential seed longevity during seed developmentin rapid-cycling brassica [Brassica campestris (rapa)L.]. Ratesof seed development were moderated by different irrigation regimes.At the early stages, glucose, fructose and sucrose predominated.The raffinose series oligosaccharides accumulated during seedmaturation, and occurred earliest in seeds from plants irrigatedonly until 16 days after pollination. Stachyose content correlatedpositively, and monosaccharide content correlated negatively,with the ability of seeds to tolerate rapid desiccation andwith their potential longevity (the constantKiof the seed viabilityequation). Similarly, the ratio of oligosaccharide[ratio]totalsugars provided strong positive correlations with ability totolerate desiccation and with potential longevity. Most of theheat-stable proteins selected for study accumulated comparativelylate, i.e. during maturation drying. The imposition of waterstress induced earlier accumulation of heat-stable proteins.The ability to tolerate desiccation was correlated with thecontent of selected heat-stable proteins, but potential longevityprovided stronger correlations. The content of a 58 kDa heat-stableprotein provided the strongest positive correlation with potentiallongevity. A simple multiple regression model of the relationsbetween potential longevity and both the oligosaccharide[ratio]totalsugar ratio and the 58 kDa heat-stable protein content was developedfor all three plant irrigation regimes to show the combinedeffect of certain sugars and proteins on seed quality. The modelsuggests that these sugars and proteins are equally likely tobe required for seed quality development, and that initiallythe sugars tend to accumulate at a greater rate than the proteins,but that during maturation drying the heat-stable proteins accumulateat the greater rate.Copyright 1998 Annals of Botany Company Brassica campestris (rapa) L., rapid-cycling brassica, potential longevity, seed development, desiccation tolerance, soluble sugars, oligosaccharides, dehydrins, heat-stable proteins.  相似文献   

3.
The effects of different drying methods on desiccation toleranceand longevity in seeds of foxglove (Digitalis purpurea L.) wereassessed from just prior to mass maturity (when seeds have attainedmaximum dry weight), and at intervals during the post-abscissionphase of development. Tolerance of drying under seed conservationconditions (15% relative humidity, RH, and 15 °C), was acquiredclose to mass maturity at 36 d after flowering (DAF). Increasesin desiccation tolerance were induced when drying was delayedfor 4 d by placing seeds in a near-saturated atmosphere (approx.100% RH), or if seeds were pre-dried for 7 d at either approx.32% or approx. 73% RH. Irrespective of the drying treatment, seed longevity increasedthroughout the sampling period, i.e. beyond the point of massmaturity and throughout the post-abscission phase, up to thepoint of incipient natural dispersal. At each developmentalstage, delayed drying or pre-drying led to an increase in seedlongevity under controlled ageing conditions compared with seedsdried directly under seed conservation conditions. Increasesin longevity were apparent as increases in the estimates forthe intercept of transformed seed survival curves (Ki) and forthe standard deviation of the normal distribution of seed lifespans,and also in the mean time to death of individuals in storage,consistent with a continuation of ripening events. The results are discussed in relation to the assessment of seedlongevity and to current post-harvest drying practices for seedsintended for long-term ex-situ conservation.Copyright 1995,1999 Academic Press Digitalis purpurea L., foxglove, seed development, seed drying, seed longevity  相似文献   

4.
Winter wheat (Triticum aestivum L.) cv. Hereward was grown inthe field in two double-walled polyethylene-covered tunnelswithin each of which a temperature gradient was superimposedon diurnal and seasonal fluctuations in temperature. The meantemperature between anthesis and harvest maturity varied from14.3 to 18.4C among plots within these tunnels. The CO2 concentrationwas controlled at different values in each tunnel; seasonalmean concentrations were 380 and 684 µmol CO2 mol–1air. Crops were also grown outside the tunnels at ambient temperaturesand CO2. Samples of seeds were harvested sequentially from eachplot between anthesis and harvest maturity. Seed germinationand seed survival during subsequent air-dry storage were determinedfor each sample. The onset of both ability to germinate anddesiccation tolerance (ability to germinate after rapid desiccationto 10–15% moisture content and subsequent rehydration)coincided in all environments. Full germination capacity (>97%, determined at 10C) was reached 4–18 d before theend of the seed-filling phase (mass maturity) in most cases.There was little or no decline in germination capacity duringsubsequent seed development and maturation. Differences in seedquality were evident, however, throughout seed development andmaturation when seed survival curves during subsequent storagewere compared. Potential longevity in air-dry storage (assessedby the value K1 of the seed viability equation) improved consistentlyboth before and after mass maturity. There was a significantpositive relation between the rate of increase in potentiallongevity (dK1Idt) and temperature (the minimum temperaturefor seed quality development was 4.8 C), but neither CO2 concentrationnor production within the polyethylene tunnels affected thisrelation. Key words: Wheat, Triticum aestivum L., seed development, seed longevity, carbon dioxide, temperature  相似文献   

5.
Changes in seed quality during ripening were studied in sixteencultivars of rice, representing the three ecogeographic racesofOryza sativa, and one cultivar ofO. glaberrima, grown duringone dry season (Nov. –May) 1992 –1993 at Los Baños, Philippines. Mass maturity (defined as the end ofseed filling period) among the cultivars was attained between18.5 and 21.6d after anthesis (DAA). The seed moisture contentat mass maturity varied between 24 and 40%. Germination abilityof seeds in the early stages of development varied significantly,but as mass maturity approached, germination increased to themaximum and no significant differences were found among cultivars.The seeds were stored hermetically at 35 °C with 15±0.2%moisture content and the resultant seed survival data were analysedby probit analysis. Potential longevity (quantified by the valueof seed lot constantKiof the seed viability equation) was greatestbetween 33 and 37 DAA, i.e. about 2 weeks after mass maturity.The stage during development at which seeds achieve maximumpotential longevity is described by the term storage maturity.Lowlandjaponicacultivars, large seeded accessions (seed mass40mg) andO. glaberrimahad shorter storage longevity ( , standarddeviation of the frequency of seed deaths in time=1.47 weeks)while cultivars with purple pericarp survived longer than othercultivars ( =2.33 weeks). The initial germination of thejaponicacultivarsat storage maturity was high (99 –100%) and the estimatesof maximum potential longevity (Ki) which ranged between 3.3(Shuang cheng nuo) and 4.4 (Minehikare) were close to thoseof theindicacultivars. This research suggests that seed production environment betweenNov. and May at Los Ba ños is benign for the temperatejaponicacultivars.The implications of these results on management of rice geneticresources are discussed. Oryza sativaL.; rice; germplasm conservation; seed production environment; seed development; seed longevity  相似文献   

6.
Effects of 2 °C chilling on the threshold moisture contentsand water potentials for various physiological processes wereestimated forAesculus hippocastanumL. seed. Seed harvested atthe time of maximum seed fall exhibited a dual response to drying:partial drying from near 50% to 32–40% moisture contentprogressively increased germination percentage (at 16 °C)up to various peak values; further desiccation was detrimental,confirming that the seeds are ‘recalcitrant’. Themoisture content for optimum germination was increased by atleast 10% as the chilling period was raised from 0 to 9 weeks.A negative linear relationship was found between log10mean timeto germinate and probit final germination, regardless of pre-treatment,indicating that partial desiccation and chilling are interchangeablein promoting germination of hydrated seed. For nearly fullyhydrated seeds, increasing the chilling period from 6 to 26weeks increased the viability-loss onset point for desiccationinjury from near 40% to about 48% moisture content without alteringthe drying rates of seed tissues. Extending moist chilling invarious seed lots from 0 to 26 weeks decreased subsequent longevityat 16 °C. For 26-week-chilled seeds longevity (the periodto lose one probit of germination) differed above and belowa threshold moisture content of 48%. It remained constant inthe moisture-content range 48–38%, but increased progressivelyas moisture content was raised above 48%. This threshold moisturecontent coincided with the value above which chilled seed pre-germinatedin storage. The results indicate that post-harvest desiccationand chilling alter the water relations of various physiologicalprocesses and a schematic summary is presented which relatesthe results to an axis water sorption isotherm.Copyright 1998Annals of Botany Company Aesculus hippocastanumL., horse chestnut, chilling, moisture content, water potential, desiccation tolerance, longevity, recalcitrant seed, embryo axis, maturation, germination.  相似文献   

7.
Low Moisture Content Limits to Relations Between Seed Longevity and Moisture   总被引:25,自引:1,他引:24  
Discontinuities at low moisture contents in the otherwise logarithmicrelations between seed longevity and seed moisture content (%,f. wt basis) in hermetic storage at 65 °C were detectedat 2–0% in groundnut (Arachis hypogaea L.), 3·5%in onion (Allium cepa L.), 4·5% in sugar beet (Beta vulgarisL.), 4·6% in barley (Hordeum vulgare L.), 5·3%in chickpea (Cicer arietinum L.) and wheat (Triticum aestinumL.), and 5·6% in cowpea [Vigna unguiculata (L.) Walp.].In contrast, the equilibrium relative humidity of seeds at thesevalues was similar, varying between 9·9% (onion and sugarbeet) and 11·5% (wheat). The mean value was 10·5%r.h. (s.e. 0.2). There was no significant (P > 0·05)effect of further reduction in seed moisture content below thesecritical values on longevity, except in wheat (P < 0·005),in which there was a further increase in longevity. In soyabean [Glycine max (L) Merrill], the logarithmic relation continueddown to the lowest moisture content investigated, 3·3%(11·4% equilibrium relative humidity). Above the criticalvalue, seed longevity in groundnut showed the least sensitivityto increase in percentage moisture content, while barley showedthe greatest, the values of the viability constant Cw (slopeof the negative logarithmic relation between longevity and moisture)being 4·089 (s.e. 0·278) and 5·966 (s.e.0·325), respectively. These differences in the valueof Cw among the eight crops were significant P < 0·005),whereas the relative sensitivity of seed longevity to changein equilibrium relative humidity above the critical moisturecontent did not differ significantly among the eight (P >0·10) and was equivalent to a doubling of longevity foreach 8·7% reduction in equilibrium relative humidity.Accordingly it is concluded that the relative effect of waterpotential on seed longevity can be considered to be the samefor these and probably also for many other orthodox species. Barley, chickpea, cowpea, groundnut, onion, soya bean, sugar beet, wheat, seed storage, seed longevity, seed moisture content, viability equation, water relations  相似文献   

8.
This research determined constants for a viability equationto predict the longevity of groundnut seeds and to improve themanagement of seedlot storage throughout the trading period.Seeds of the Brazilian cultivar ‘Tatu’ (Valenciabunch type) were tested. Nine moisture content levels (rangingfrom 2.4 to 12.8%) and three storage temperatures (40, 50 and65 °C) were used. Sub-samples for each moisture content-storagetemperature combination were sealed in laminated aluminium-foilpackets and stored in incubators until complete survival curveswere obtained. A reliable equation was obtained to predict groundnutseed longevity through the constantsKE=6.177,CW=3.426,CH=0.0304andCQ=0.000453.Copyright 1998 Annals of Botany Company Arachis hypogaeaL., seed longevity, seed storage, viability equation.  相似文献   

9.
In previous work, we demonstrated that there was an optimummoisture level for seed storage at a given temperature (Vertucciand Roos, 1990), and suggested, using thermodynamic considerations,that the optimum moisture content increased as the storage temperaturedecreased (Vertucci and Roos, 1993b). In this paper, we presentdata from a two year study of aging rates in pea (Pisum sativum)seeds supporting the hypothesis that the optimum moisture contentfor storage varies with temperature. Seed viability and vigourwere monitored during storage under dark or lighted conditionsat relative humidities between 1 and 90%, and temperatures between-5 and 65°C. The optimum moisture content varied from 0·015g H2O g-1 d.wt at 65°C to 0·101 g H2O g-1 d.wt at15°C under dark conditions and from 0·057 at 35°Cto 0·092 g H2O g-1 d.wt at -5°C under lighted conditions.Our results suggest that optimum moisture contents cannot beconsidered independently of temperature. This conclusion hasimportant implications for 'ultra-dry' and cryopreservationtechnologies.Copyright 1994, 1999 Academic Press Seed storage, seed aging, seed longevity, water content, temperature, glass, desiccation damage, ultradry, Pisum sativum L., pea, cryopreservation  相似文献   

10.
The onset and development of both the ability to germinate andto tolerate rapid enforced desiccation were investigated duringthe development and maturation of seeds of bean (Phaseolus vulgahsL.) at different temperatures and also after different slow-dryingtreatments. The onset of germinability occurred when seeds wereless than half-filled in the absence of both a post-ovule abscissionprogramme and water loss from the seeds. Maximum ability togerminate normally and maximum tolerance to rapid enforced desiccationto 14–16% moisture content did not occur until 2–23d and 6–23 d after mass maturity (end of the seed-fillingperiod), respectively. The slow-drying of immature seeds for7 d ex planta before rapid enforced desiccation increased theability to germinate and stimulated the onset of desicationtolerance. Holding seeds moist for 7 d (during which time moisturecontent declined by <5%) had similar effects, but seed germinationafter rapid enforced desiccation was consistently greater inseeds first dried slowly than held moist. Comparisons betweenseeds less than half-filled dried slowly ex planta and fullseeds undergoing maturation drying in planta showed that a similar(slow) rate of water loss over a 7 d period had a similar effecton the subsequent ability of seeds to tolerate rapid enforceddesiccation. Thus, neither a post-ovule abscission programmenor loss of water were required for the onset of the abilityto germinate in developing bean seeds, but both were requiredfor the development of the ability to germinate and resistanceto solute leakage, when rehydrated, after rapid enforced desiccation. Key words: Bean, Phaseolus vulgaris L., seed germination, seed development, desiccation tolerance  相似文献   

11.
Changes in seed quality in pepper (Capsicum annuum L.) were monitored during seed development and maturation in two seasons. Seed quality was assessed by a number of different tests, but principally by determining seed storage longevity in laboratory tests and seedling growth in glasshouse tests. Mass maturity (defined as the end of the seed-filling phase) occurred 49–53 days after anthesis (DAA) in 1989 (varying among fruit layers) and 53 DAA in 1990 when seed moisture contents were 51–53%. The onset of both germinability and desiccation tolerance occurred either just before or at mass maturity. Maximum potential longevity (assessed by the value of the seed lot constant Ki) was achieved 63–65 DAA, i.e. not until 10–12 days after mass maturity (DAMM), in both years. Seedling dry weights in the glasshouse growth tests were maximal later still - for seeds harvested 17–21 DAMM in 1989 and 17 DAMM in 1990; the effects on seedling weight arose from differences in times from sowing to emergence (P < 0.005) among different seed harvests, with no significant differences in subsequent relative growth rates (P > 0.25). Seed priming reduced mean germination times for seeds harvested at all stages of development, but had little effect on germination capacity and potential longevity, and did not affect the pattern of changes in potential longevity during seed development and maturation. The results contradict the hypothesis that seed quality is maximal at the end of the seed-filling phase and that viability and vigour begin to decline immediately thereafter.  相似文献   

12.
Seeds of lettuce (Lactuca sativa L.) and sunflower (Helianthusannuus L.) were stored hermetically at 35 °C with 11 differentmoisture contents between 1·3 and 6·9%, and between1·3 and 7·1% of fresh mass, respectively. Germinationand vigour (mean germination time, root length, seedling dryweight) were determined after storage for 0, 8, or 16 weeks(sunflower) or 0, 8, 16, or 48 weeks (lettuce) in these environmentsfollowed by various humidification treatments (to avoid imbibitioninjury). The range of seed storage moisture contents over whichdeterioration was minimized depended upon the criterion of deteriorationused, and varied somewhat between species. Comparison of theseranges for seeds stored for the longest durations showed thatfor some criteria seed performance was poorer (P < 0·05)at both the lowest and highest moisture contents investigatedthan at certain of the intermediate storage moisture contents(e.g, most rapid germination occurred in sunflower followingstorage at 2·2-4·7% moisture content), whereasfor other criteria all the drier storage moisture contents weresuperior to the more moist (e,g. greatest seedling growth occurredin sunflower following storage at 1·3-5·1% moisturecontent). But none of these results suggested that lettuce andsunflower seeds stored hermetically at 2·5-3·0%or 2·2-2·5% moisture content, respectively, wereless vigorous than at any other moisture content tested. Inboth species, these storage moisture contents are in equilibriumwith about 8-10% relative humidity (r.h.) at 20 °C, whichis similar to and indeed marginally less than the 10-13% r.h.recommended following earlier studies on the longevity of seedsin hermetic storage at much warmer temperatures. Thus, theseresults show no evidence that the optimum seed moisture contentfor storage increases with decrease in temperature, at leastover the range 35-65 °C, as has been suggested elsewhere.We conclude that the international recommendation for the long-termseed storage for genetic conservation at 5 ± 1% moisturecontent should not be revised upwardly, and that in situationswhere refrigeration cannot be provided storage at even lowermoisture contents is worthy of further investigation for thoseseeds in which desiccation at 20 °C to equilibrium at 10%r.h. results in moisture contents well below 5%.Copyright 1995,1999 Academic Press Helianthus annuus L., sunflower, Lactuca sativa L., lettuce, desiccation, seed storage, seed vigour  相似文献   

13.
The lower limit to the negative logarithmic relation betweenseed longevity and moisture content was determined in threesubspecies of rice (Oryza satwa L.) by storing seeds of fivecultivars at 65 °C with 11 different moisture contents (1.5–15.3%f. wt) for various periods up to 150 d and then testing forgermination. The estimates of the low-moisture-content limit(mc) were 4.3% for subsp. indica, 4.4% for subsp. japonica,and 4.5% for subsp. javanica. These moisture contents were inequilibrium with 10.5—12.0% r.h. No significant effectof moisture content between 1.5% and mc on longevity was detected(P > 0.05), while between mc and 15.3% there were negativelogarithmic relations between longevity and moisture content.There were no significant differences in the relations betweenlongevity and moisture either above or below mc between thetwo japonica cultivars or between the two javanica cultivars(P > 0.10). There was also no significant difference in theslope of the negative logarithmic relation between longevityand moisture above mc among the three subspecies (P > 0.25).However, there were significant differences in the standarddeviation of the frequency distribution of seed deaths in timeat any one moisture content, both above and below mc; this isa measure of seed longevity which is independent of pre-storageenvironment, and the differences observed show that there aregenetically determined differences in longevity among the threesubspecies (P < 0.005), indica being the longest and japonicathe shortest lived. The results provide no evidence for intra-specificvariation in mc and support the view that the maximum seed storagemoisture content which provides the maximum longevity is thatwhich is in equilibrium with about 10–11% r.h. It is concludedthat while the seed viability constant Cw of the seed viabilityequation is species specific and therefore applies to most,if not all, cultivars of rice, variation in the value of KEis the source of the differences in potential longevity of thethree subspecies. Rice, Oryza sativa L, seed storage, seed longevity, seed moisture, viability equation  相似文献   

14.
Biochemical properties, i.e. endogenous abscisic acid, proline,sugars, respiration, adenosine phosphates and adenylate energycharge, and growth and moisture content were measured duringthe development of seeds of Machilus thunbergii. As dry matteraccumulated in the embryo during development, moisture content,ABA, proline, respiration and sugars all declined. At maturity,the dry mass of the seeds failed to attain a plateau beforethe period of natural seed shedding; the axis and cotyledonsreached moisture contents of 58 and 45%, respectively. Dryingof immature seeds at 73% relative humidity and 25 °C for30 d resulted in a complete loss of viability at all developmentalstages tested with the exception of mature seeds that were ableto tolerate a 5% decrease in moisture content before germinationdeclined. ABA was detected in all embryos tested, with a maximum value16.·16 µg g-1 d. wt about midway through development.Although the presence of ABA induced no tolerance to desiccationof mature seeds, it did coincide with decreased content of waterin the developing seeds and decreased respiration. Desiccationdamage of M. thunbergii seeds occurred when moisture contentwas still high (45%) and this damage was not related to theabsence of oligosaccharides in the mature seeds. We concludethat developing embryos and mature seeds of M. thunbergii haveproperties common to many recalcitrant seeds, with seeds beingsensitive to desiccation at all stages, having a prominent ABApeak, little proline, lacking oligosaccharides, and specifically,little dormancy and a moderate rate of respiration of matureseeds (0·9 µmol O2 min-1 g-1 f. wt). Adenosinetriphosphate content and energy charge decreased from stagefour to stage eight of seed development, then increased againto 103 nmol g-1 d. wt and 0·73, respectively, in matureseeds. The moderate energy charge observed in mature seeds indicatesthat continuous metabolism is also a characteristic of recalcitrantseeds.Copyright 1995, 1999 Academic Press Machilus thunbergii, seed development, recalcitrant seed, abscisic acid, energy charge  相似文献   

15.
KRAAK  H. L.; VOS  J. 《Annals of botany》1987,59(3):343-349
Seeds of two lettuce cultivars (Lactuca sativa L., cv. Meikoninginand cv. Grand Rapids) were hermetically stored with constantmoisture contents ranging between 3.6 and 17.9 per cent (freshweight basis) at constant temperatures ranging between 5 and75 °C. The decline with time in percentage germination andpercentage normal seedlings was determined for each storagetreatment. The data were fitted to an equation which containsthe constants: K1, the probit of the initial percentage germinationor normal seedlings; KE, a species constant; CW, the constantof a logarithmic moisture term; CH, the constant of a lineartemperature term and CQ, the constant of a quadratic temperatureterm. Regression analysis of data from storage periods up to5.5 years at temperatures of 5–75 °C and seed moisturecontents of 3.6–13.6 per cent yielded the following values:KE= 8.218, CW=4.797±0.163, CH=0.0489±0.0050 andCQ=0.000365±0.000056. Although this equation consistentlyprovided a better fit, simplified equations, assuming eithera log-linear relationship between seed longevity and temperature,or a log-linear relationship between seed longevity and bothmoisture content and temperature, accounted for more than 94per cent of the variation at the restricted temperature rangeof 5–40 °C. Longevity of the same seed lots at sub-zero temperatures (–5,–10 and –20 °C) was studied in separate tests.Freezing damage, resulting in abnormal seedlings in the germinationtest, occurred at –20 °C when the moisture contentof the seeds exceeded 12 per cent. No decline in percentagenormal seedlings was observed after a storage period of 18 monthsor longer at –20 °C, provided the seed moisture contentdid not exceed 9.5 per cent. For seeds stored at –5 and–10 °C with 9.6–12.5 per cent moisture content,the observed rate of decline of percentage normal seedlingswas adequately predicted by the viability equation, using theabove values for the constants. This suggests that for low moisturecontents the viability equation can be applied to estimate longevityat sub-zero temperatures. Lettuce, Lactuca sativa (L.), seed longevity, seed storage, viability constants, storage conditions  相似文献   

16.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

17.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

18.
Seed growth characteristics of Aesculus hippocastanum were examinedin detail during development from about 70 to 140 d after anthesis(DAA), mainly in 1988 and 1989. Mean fresh and dry weights increasedfor both the axis and the whole seed up to the time of peakseed fall at 135 DAA with no cessation before fruit abscission.Water per seed increased up to 100 DAA, after which no furtherincrease occurred; moisture content declined for the embryonicaxis and whole seed respectively from above 75 and 65% at 95DAA to 65 and 50% at 130 DAA. At fruit shedding in 1990 waterpotential values of -1·2, -2·6 and -1·1MPa were observed for the testa, cotyledon and axis tissuesrespectively; relevant sorption isotherms are presented. Decreases in seed moisture content during development were accompaniedby increases in desiccation tolerance and in germinability,both reaching their maximum at the time of peak seed fall. Atmaturity, only about 10% viability was retained on drying seedto 20% moisture content; it is confirmed that the seeds are'recalcitrant'. The exact relationship between moisture contentand germination during development was dependent on the deptof dormancy, as judged by the period of chilling required; eachduration of chilling at 2°C within the range 3-12 weeksyields a curve of sigmoid shape. No germination occurred at26°C without chilling, but nearly full germination can beobserved for samples collected at 6 weeks before maximum seedfall with 12 weeks chilling. The rate of moisture loss duringdesiccation at 15°C and 15% rh becomes reduced during development.The ontogeny of these 'recalcitrant' seeds is compared withthat of 'orthodox' seeded species and the implication of sigmoid-shapedcurves for the relationship between seed moisture content andgermination are considered.Copyright 1993, 1999 Academic Press Aesculus hippocastanum L., horse chestnut, seed development, water status, germination, desiccation intolerance, desiccation rate  相似文献   

19.
Changes in seed quality were monitored during the developmentand maturation of seeds of bean (Phaseolus vulgaris L.) in differentenvironments by determining the subsequent survival of seedsin airdry storage. The seed survival curves (percentage normalgermination plotted against period of storage) conformed tonegative cumulative normal distributions, and the same seedstorage environment (40 C with 14% moisture content) providedthe same estimate of the standard deviation of the frequencydistribution of seed deaths in time for all the seed lots harvestedat different times during development in the different environments(21.3 d and 20.9 d in 1993 and 1994, respectively). The potentiallongevity of developing seeds (quantified by the value of theseed lot constant of the seed viablity equation) continued toincrease after mass maturity (end of the seed-filling phase).Maximum potential longevity was attained 23 d (30/24 C, 1993),13 d (30/24 C, 1994), or 34 d (27/21 C, 1994) after mass maturity,by which time seeds had dried naturally to 17% (30/24 C, 1993),18% (30/24 C, 1994), and 16% (27/21 C, 1994) moisture content.Seed quality was greater in the cooler temperature seed productionregime because of an increased duration of seed quality improvement.The results show that maximum seed quality is not attained untilsome time after the end of the seed-filling phase in bean, andconfirm that the slow desiccation that occurs after ovule abscissionduring natural maturation drying is beneficial to the developmentof seed quality in bean. Key words: Bean, Phaseolus vulgaris L., seed development, seed longevity, seed storage  相似文献   

20.
Tomato seeds with a moisture content of 16.4% were stored hermeticallyat one of five constant temperatures (10, 20, 30, 40, 50 °C)or in one of nine alternating temperature (24 h/24 h) regimes(10/30, 10/40, 10/50, 20/30, 20/40, 20/50, 30/40, 30/50, 40/50°C) for up to 224 d. In each regime, seed survival conformedto cumulative negative normal distributions and all 14 survivalcurves could be constrained to a common origin. Estimates ofthe constants CHand CQof the viability equation determined atconstant temperatures were 0.0346 (s.e. 0.0058) and 0.000401(s.e. 0.000096), respectively. The effective temperature forseed survival of each alternating temperature regime was alwaysmuch higher than the mean. Tomato seeds were also stored hermeticallyat 15.9% moisture content at 40 °C for 0, 7, 14, 21 or 28d before transfer to 50 °C. This investigation showed thatthe standard deviation of the subsequent survival curves at50 °C was unaffected by the duration of previous storageat 40 °C. The results of both investigations were consistentwith the hypothesis that loss in probit viability is solelya function of the current storage environment, with no effectof change in temperature per se. The application of the viabilityequation to seed survival in fluctuating environments was validatedagainst independent observations for rice in uncontrolled storageconditions. Copyright 2001 Annals of Botany Company Temperature, seed storage, longevity, moisture content, viability equation, tomato, rice  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号