首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The outgrowth of spores of Bacillus subtilis 168 proceeded normally in temperature-sensitive DNA mutants under restrictive conditions and in the absence of DNA synthesis. Two inhibitors of DNA synthesis, nalidoxic acid and 6-(p-hydroxyphenylazo)-uracil, inhibited spore outgrowth under some nutritional conditions; this inhibition of outgrowth however, though not that of DNA synthesis, could be reversed by glucose. The sensitivity of the outgrowing spores to nalidixic acid and 6-(p-hydroxyphenylazo)-uracil inhbition decreased as a function of outgrowth time. The cells became completely resistant to the inhibitors after 90 min. The development of this resistance occurred also in the absence of DNA synthesis. It was concluded that DNA synthesis is not needed for spore outgrowth, and that outgrowing cells and vegetative cells differ in their sensitivity to these inhibitors.  相似文献   

2.
The synthesis of poly(A)-containing RNA in outgrowing spores of Bacillus subtilis was studied. A significant amount of RNA puls-labelled with 3H-uridine is polyadenylated. With the beginning of RNA synthesis in outgrowing spores labelled poly(A)-containing RNA was detected. The amount of poly(A)-RNA during the outgrowth and first cell division remains constant. Besides poly(A)-RNA the synthesis of tRNA and rRNA occurs. These results indicate a simultaneous activation of synthesis of tRNA, rRNA as well as of poly(A)-containing RNA during outgrowth of B. subtilis spores.  相似文献   

3.
Nucleic acid synthesis was studied during germination and outgrowth of normal spores of Bacillus subtilis, as well as of spores carrying the genome of phage phie. In a system in which development was restricted to the spore-darkening phase, synthesis of ribonucleic acid (RNA), but not deoxyribonucleic acid (DNA), was detected. The extent of RNA synthesis and turnover, during this phase was similar for the two types of spores. In a partially darkened population of spores of either type, there was little RNA degradation, whereas there was considerable turnover in a fully darkened population. The DNA-dependent RNA polymerase of dormant or dark spores was not active in vitro with phi DNA as template, although a sigma-like factor could be separated from the polymerizing activity by zone centrifugation. Within 40 min after resuspension of dark spores in a medium that allows outgrowth, the enzyme acquired the ability to transcribe the phage DNA efficiently. During outgrowth, both normal and carrier spores synthesized DNA, but in carrier spores this DNA was almost entirely phage specific. The pattern of RNA accumulation in normal spores was in two distinct phase (0 to 60 min and 90 to 180 min). The second phase was absent in outgrowing carrier spores. The burst of phage in carrier spores occurred at 160 to 180 min.  相似文献   

4.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

5.
The effect of nalidixic acid on deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis cells infected with bacteriophage SPO1 was studied. Nalidixic acid had little inhibitory effect on SPO1 DNA synthesis at concentrations that drastically inhibited B. subtilis DNA synthesis. Inhibition of DNA synthesis, appropriate to the concentration used, was imposed within 1 min after addition of nalidixic acid, suggesting that it acts directly on DNA synthesis in both infected and uninfected cells. The SPO1 DNA synthesized in the presence of high concentrations of nalidixic acid had a density characteristic of normal SPO1 DNA and was packaged into viable progeny phage particles, but its rate of synthesis was reduced and bacterial lysis was delayed.  相似文献   

6.
AIMS: To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. METHODS AND RESULTS: Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold during spore outgrowth in the presence of beta-MUG. Deletion of the genes coding for BglA, BglH, BglC and BglD reduced beta-MUG hydrolysis by germinating and outgrowing spores of B. subtilis 168 at least 99.7%. Assay of glucosidases active on beta-MUG or beta-MUG-P in extracts of dormant and outgrowing spores of B. atrophaeus revealed no enzyme active on beta-MUG and one enzyme that comprised > or =90% of the phosphoglucosidase active on beta-MUG-P. Partial purification and amino-terminal sequence analysis of this phosphoglucosidase identified this enzyme as BglH. CONCLUSIONS: Generation of MU from beta-MUG by germinating and outgrowing spores of B. atrophaeus and B. subtilis is mediated by the PTS-driven uptake and phosphorylation of beta-MUG, followed by phosphoglucosidase action on the intracellular beta-MUG-P. The major phosphoglucosidase catalyzing MU generation from beta-MUG-P in spores of both species is probably BglH. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of uptake and hydrolysis of beta-MUG by germinating and outgrowing spores of Bacillus species, in particular B. atrophaeus. The research reported here provides a biological basis for a Rapid Readout Biological Indicator that is used to monitor the efficacy of ethylene oxide sterilization.  相似文献   

7.
8.
Transforming activity released in sequential genetic order during the first synchronous cycle of DNA replication during outgrowth of spores of Bacillus subtilis 168 was investigated. A transformation assay was used consisting of outgrowing spores as DNA donors and multiply marked competent cells as recipients. DNA synthesis inhibitors known to stop DNA release were used during and subsequent to DNA transfer to recipient cells. The released DNA sedimented with the outgrowing cells after low-speed centrifugation, and it was discovered that markers released both early and late were resistant to up to 500 microgram of deoxyribonuclease per ml under conditions in which the transforming capacity of purified DNA was eliminated by 5 microgram of the nuclease per ml. Inaccessibility to deoxyribonuclease was increased and maintained during the transformation event while detergents and proteolytic attack did not expose the released chromosome to nuclease action. The results indicate that tight physical contact between outgrowing spores and competent cells is required for transformation in this system.  相似文献   

9.
Resporulation of outgrowing Bacillus subtilis spores.   总被引:7,自引:5,他引:2       下载免费PDF全文
Germinated spores of Bacillus subtilis were incubated in outgrowth medium and tested periodically for capacity to sporulate when suspended in sporulation medium. Concurrent measurements were made of deoxyribonucleic acid (DNA) content and numbers of cell division septa and nucleoids. Sporulation potential is shown to reach a peak at about 110 min at which time the chromosomes are probably well into the second round of replication. Experiments with nalidixic acid show that sporulation potential can be generated in the outgrowth medium even when DNA synthesis is largely prevented. Further experiments show that nalidixic acid apparently does not prevent the formation of DNA initiation complexes, which can subsequently function after resuspension in the sporulation medium. The results support those previously obtained with a temperature-sensitive DNA mutant which indicated that sporulation could only be induced at a specific stage of chromosome replication, and then only if the cells are in a state of nutritional "step-down".  相似文献   

10.
Bactericidal action of nalidixic acid on Bacillus subtilis   总被引:21,自引:9,他引:12  
Cook, Thomas M. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), Karen G. Brown, James V. Boyle, and William A. Goss. Bactericidal action of nalidixic acid on Bacillus subtilis. J. Bacteriol. 92:1510-1514. 1966.-Nalidixic acid at moderate concentrations exerts a bactericidal action upon the gram-positive bacterium Bacillus subtilis. The synthesis of deoxyribonucleic acid (DNA) in B. subtilis is selectively inhibited by nalidixic acid at concentrations approximating the minimal growth inhibitory concentration. Higher concentrations (25 mug/ml) result in a 30 to 35% degradation of DNA. After extended exposure to nalidixic acid, protein synthesis is also depressed. Cells of B. subtilis treated with nalidixic acid exhibit characteristic morphological abnormalities including cell elongation and development of gram-negative areas. From the results presented, it can be concluded that the mode of action of nalidixic acid upon susceptible bacteria is similar for both gram-positive and gram-negative species.  相似文献   

11.
Inhibition of DNA synthesis in permeabilized L cells by novobiocin   总被引:1,自引:0,他引:1  
Novobiocin was equipotent in inhibiting DNA and RNA synthesis in cultured mouse L cells. It also suppressed in vitro DNA and RNA synthesis in permeabilized L cells and nuclei; 50 percent inhibition of DNA and RNA synthesis was obtained by 1 mM and 20 mM novobiocin, respectively. ATP antagonized the effect of novobiocin. Nalidixic acid had a weak inhibitory effect on in vitro DNA synthesis; 10 mM nalidixic acid showed 60 percent inhibition. ATP did not antagonize nalidixic acid. The inhibitory effect of novobiocin exceeded that of aphidicolin. These findings suggest a participation of a gyrase- and/or type II topoisomerase-like enzyme in the DNA replication machinery in L cells.  相似文献   

12.
13.
14.
Morphological changes and synthesis of DNA, RNA, protein, and cell wall were investigated during germination of resting spores of Bacillus subtilis exposed transiently to the cyclic polypeptide antibiotics, polymyxin B and gramicidin S, and the aminoglycoside antibiotics, streptomycin, kanamycin, and gentamicin. Normal germinated spores showed breaks of the spore coat, a diminution in size and a fibrillar appearance of the cortex, a swelling core, a cell wall as thick as that of vegetable cells, some mesosomes and DNA fibrils. On the other hand, no breaks of the spore coat, a spore core with a slight swelling and irregular form, a thin cell wall, no demonstration of the nuclear material and no granularity in the cytoplasm were characteristic of the germinated spores derived from polymyxin B- and gramicidin S-treated resting spores. With gramicidin S-treated germinated spores a few vacuoles were formed in the cytoplasm. Both polymyxin B- and gramicidin S-treated germinated spores showed little or no synthesis of DNA, RNA, and protein. The vegetative cells derived from streptomycin-treated resting spores demonstrated several finely granular regions in the cytoplasm and a disorder of the fibrillar nucleoid, and their autolysis occurred early. Their DNA and RNA synthesis was normal, whereas protein synthesis was low. In spite of no occurrence of cell division and very low protein synthesis, the most striking characteristics of the outgrowing cells derived from kanamycin-treated resting spores were a markedly thickened cell wall and a continuous incorporation of labeled D-alanine suggesting cell wall synthesis; RNA synthesis was slightly lower and DNA synthesis was almost normal. The outgrowing cells from gentamicin-treated resting spores also revealed relatively thick cell walls and a very slight incorporation of labeled D-alanine. Their DNA and RNA synthesis was fairly low and protein synthesis was almost completely inhibited. These results coincide with the growth curves of individual antibiotic-treated resting spores.  相似文献   

15.
16.
Harry EJ 《Biochimie》2001,83(1):75-81
Progress in solving the long-standing puzzle of how a cell coordinates chromosome replication with cell division is significantly aided by the use of synchronous cell populations. Currently three systems are employed for obtaining such populations: the Escherichia coli 'baby machine', the developmentally-controlled cell cycle of Caulobacter crescentus, and Bacillus subtilis germinated and outgrowing spores. This review examines our current understanding of the relationship between replication and division and how the use of B. subtilis outgrowing spores and, more recently its combination with immunofluorescence microscopy, has contributed significantly to this important area of biology. About 20 years ago, and also more recently, this system was used to show convincingly that termination of DNA replication is not essential for a central septum to form, raising the possibility that the early stages of division occur well before termination. It has also been demonstrated that there is no major synthesis of the division initiation proteins, FtsZ and DivIB, linked to initiation, progression or completion of the first round of chromosome replication accompanying spore outgrowth. This has led to the suggestion that the primary link between chromosome replication and cell division at midcell is not likely to occur through a control over the levels of these proteins. Very recent work has employed a combination of the use of B. subtilis outgrowing spores with immunofluorescence microscopy to investigate the relationship between midcell Z ring assembly and the round of chromosome replication linked to it. The results of this work suggest a role for initiation and progression into the round of replication in blocking midcell Z ring formation until the round is complete or almost complete, thereby ensuring that cell division occurs between two equally-partitioned chromosomes.  相似文献   

17.
Pulse labeling studies with Bacillus subtilis showed that DuP 721 inhibited protein synthesis. The IC50 of DuP 721 for protein synthesis was 0.25 micrograms/ml but it was greater than 32 micrograms/ml for RNA and DNA synthesis. In cell-free systems, DuP 721 concentrations up to 100 microM did not inhibit peptide chain elongation reactions under conditions where chloramphenicol, tetracycline and hygromycin B inhibited these reactions. Furthermore, Dup 721 did not cause phenotypic suppression of nonsense mutations suggesting that DuP 721 did not inhibit peptide chain termination. Thus, the mechanism of action of DuP 721 is at a target preceeding chain elongation.  相似文献   

18.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

19.
20.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号