首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
2.
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.  相似文献   

3.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

4.
Chemotactic factors locally secreted from tissues regulate leukocyte migration via cell membrane receptors that induce intracellular signals. It has been suggested that neutrophils stimulated by bacterial peptides secrete a secondary stimulant that enhances the chemotactic cell migration of the surrounding cells. This paracrine mechanism contributes to chemokine-dependent neutrophil migration, however, it has not yet been extensively studied in lymphocytes. In this study, we provide evidence that lymphocytes stimulated by the chemokine, CXCL12, affect the CXCR4-independent chemotactic response of the surrounding cells. We found that CXCR4-expressing lymphocytes or the conditioned medium from CXCL12-stimulated cells promoted CXCR4-deficient cell chemotaxis. In contrast, the conditioned medium from CXCL12-stimulated cells suppressed CCR7 ligand-dependent directionality and the cell migration speed of CXCR4-deficient cells. These results suggest that paracrine factors from CXCL12-stimulated cells navigate surrounding cells to CXCL12 by controlling the responsiveness to CCR7 ligand chemokines and CXCL12.  相似文献   

5.
The Duffy Ag expressed on RBCs, capillaries, and postcapillary venular endothelial cells binds selective CXC and CC chemokines with high affinity. Cells transfected with the Duffy Ag internalize but do not degrade chemokine ligand. It has been proposed that Duffy Ag transports chemokines across the endothelium. We hypothesized that Duffy Ag participates in the movement of chemokines across the endothelium and, by doing so, modifies neutrophil transmigration. We found that the Duffy Ag transfected into human endothelial cells facilitates movement of the radiolabeled CXC chemokine, growth related oncogene-alpha/CXC chemokine ligand 1 (GRO-alpha/CXCL1), across an endothelial monolayer. In addition, neutrophil migration toward GRO-alpha/CXCL1 and IL-8 (IL-8/CXCL8) was enhanced across an endothelial monolayer expressing the Duffy Ag. Furthermore, GRO-alpha/CXCL1 stimulation of endothelial cells expressing the Duffy Ag did not affect gene expression by oligonucleotide microarray analysis. These in vitro observations are supported by the finding that IL-8/CXCL8-driven neutrophil recruitment into the lungs was markedly attenuated in transgenic mice lacking the Duffy Ag. We conclude that Duffy Ag has a role in enhancing leukocyte recruitment to sites of inflammation by facilitating movement of chemokines across the endothelium.  相似文献   

6.
On chemokine stimulation, leucocytes produce and secrete proteolytic enzymes for innate immune defence mechanisms. Some of these proteases modify the biological activity of the chemokines. For instance, neutrophils secrete gelatinase B (matrix metalloproteinase-9, MMP-9) and neutrophil collagenase (MMP-8) after stimulation with interleukin-8/CXCL8 (IL-8). Gelatinase B cleaves and potentiates IL-8, generating a positive feedback. Here, we extend these findings and compare the processing of the CXC chemokines human and mouse granulocyte chemotactic protein-2/CXCL6 (GCP-2) and the closely related human epithelial-cell derived neutrophil activating peptide-78/CXCL5 (ENA-78) with that of human IL-8. Human GCP-2 and ENA-78 are cleaved by gelatinase B at similar rates to IL-8. In addition, GCP-2 is cleaved by neutrophil collagenase, but at a lower rate. The cleavage of GCP-2 is exclusively N-terminal and does not result in any change in biological activity. In contrast, ENA-78 is cleaved by gelatinase B at eight positions at various rates, finally generating inactive fragments. Physiologically, sequential cleavage of ENA-78 may result in early potentiation and later in inactivation of the chemokine. Remarkably, in the mouse, which lacks IL-8 which is replaced by GCP-2/LIX as the most potent neutrophil activating chemokine, N-terminal clipping and twofold potentiation by gelatinase B was also observed. In addition to the similarities in the potentiation of IL-8 in humans and GCP-2 in mice, the conversion of mouse GCP-2/LIX by mouse gelatinase B is the fastest for any combination of chemokines and MMPs so far reported. This rapid conversion was also performed by crude neutrophil granule secretion under physiological conditions, extending the relevance of this proteolytic cleavage to the in vivo situation.  相似文献   

7.
Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions.  相似文献   

8.
A sequence encoding a CXC - type chemokine from rainbow trout was found to most resemble members of the CXCL9/CXCL10/CXCL11 sub-family. In mammals, all 3 chemokines are regulated by IFN-gamma and are chemotactic for activated T lymphocytes. The trout chemokine (gammaIP1), with a message of 787 nucleotides, contains 100 amino acids in a typical non-ELR CXC chemokine arrangement. A second sequence (gammaIP2), with 6 nucleotide differences in the coding region when compared to the first, was also identified although it is not known whether this is a second functional gene or a second allele. The gene is separated onto 4 exons, and the introns intervene in conserved positions according to the mammalian equivalents. The sequence encoded by the second exon shares the highest amino acid identity (37%) with CXCL10, with lower values of identity to other CXC chemokines (17-31%). Furthermore, phylogenetic analysis groups the trout chemokine with mammalian CXCL9, CXCL10 and CXCL11 peptides. Constitutive expression of gammaIP is seen in trout gill and low level expression in spleen, head kidney and liver. In RTS-11 cells, gammaIP expression can be induced with poly I:C, but not by LPS, suggesting virus-mediated regulation of gammaIP. Intraperitoneal injection of recombinant trout TNF-alpha caused elevation in gammaIP mRNA levels in trout head kidney.  相似文献   

9.
Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4+ T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4+ T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.  相似文献   

10.
Survival from murine pulmonary nocardiosis is highly dependent on CXC chemokine receptor-2 (CXCR2) ligand-mediated neutrophil chemotaxis and subsequent clearance of the infectious agent Nocardia asteroides. Intratracheal inoculation of N. asteroides rapidly up-regulated the CXC chemokines macrophage inflammatory protein-2 (MIP-2) and KC within 24 h, with levels remaining elevated through day 3 before returning to near baseline levels by day 7. Coinciding with elevated MIP-2 and KC were the rapid recruitment of neutrophils and clearance of the organism. Anti-Ly-6G Ab-mediated neutrophil depletion before bacterial challenge resulted in strikingly increased mortality to N. asteroides infection. The relative contribution of MIP-2 in neutrophil recruitment was examined by anti-MIP-2 Ab treatment before nocardial infection. MIP-2 neutralization had no detrimental effects on survival, neutrophil recruitment, or bacterial clearance, suggesting the usage of additional or alternative CXCR2-binding ligands. The importance of the CXC family of chemokines was determined by the administration of an anti-CXCR2 Ab capable of blocking ligand binding in vivo. Anti-CXCR2 treatment greatly increased mortality by preventing neutrophil migration into the lung. Paralleling this impaired neutrophil recruitment was a 100-fold increase in lung bacterial burden. Combined, these observations indicate a critical role for neutrophils and CXC chemokines during nocardial pneumonia. These data directly link CXCR2 ligands and neutrophil recruitment and lend further support to the concept of CXC chemokine redundancy. For infections highly dependent on neutrophils, such as nocardial pneumonia, this is of critical importance.  相似文献   

11.
The ELRCXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74–103)) being the most potent. The COOH-terminal peptide CXCL9(74–103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74–103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74–103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74–103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.  相似文献   

12.
Neutrophil specific chemokines are potent chemoattractants for neutrophils. IL-8/CXCL8 is the most extensively studied member of this group, and its concentrations increase during inflammatory conditions of the newborn infant including sepsis and chronic lung disease. A significant amount of information exists on the effects of IL-8/CXCL8 on neutrophil chemotaxis of neonates, but little is known about the other neutrophil specific chemokines. The aim of this study was to determine the relative potency of the neutrophil specific chemokines on chemotaxis of neonatal neutrophils and to compare this effect with the effect on adult neutrophils. Neutrophils were isolated from cord blood or healthy adult donors and incubated in a Neuroprobe chemotaxis chamber. Chemokine concentrations ranging from 1-1000 ng/mL were used. Differences in chemotactic potency existed among the seven neutrophil specific chemokines. Specifically, at 100 ng/mL, the order was IL-8/CXCL8>GRO-alpha/CXCL1>GCP-2/CXCL6>NAP-2/CXCL7>ENA-78/CXCL5>GRO-gamma/CXCL2>GRO-beta/CXCL3. This pattern was observed for adult and neonatal neutrophils. We conclude that (1) neutrophils from cord blood exhibit the same pattern of potency for each ELR chemokine as neutrophils from adults, and (2) migration of neonatal neutrophils is significantly less than that of adults at every concentration examined except the lowest (1 ng/mL).  相似文献   

13.
Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.  相似文献   

14.
Neutrophils are critical for the rapid eradication of bacterial pathogens, but they also contribute to the development of multiple organ failure in sepsis. We hypothesized that increasing early recruitment of neutrophils to the focus of infection will increase bacterial clearance and improve survival. Sepsis was induced in mice, using cecal ligation and puncture (CLP); blood samples were collected at 6 and 24 h; and survival was followed for 28 d. In separate experiments, peritoneal bacteria and inflammatory cells were measured. Septic mice predicted to die based on IL-6 levels (Die-P) had higher concentrations of CXCL1 and CXCL2 in the peritoneum and plasma compared with those predicted to live (Live-P). At 6 h, Live-P and Die-P had equivalent numbers of peritoneal neutrophils and bacteria. In Die-P mice the number of peritoneal bacteria increased between 6 and 24 h post-CLP, whereas in Live-P it decreased. The i.p. injection of CXCL1 and CXCL2 in naive mice resulted in local neutrophil recruitment. When given immediately after CLP, CXC chemokines increased peritoneal neutrophil recruitment at 6 h after CLP. This early increase in neutrophils induced by exogenous chemokines resulted in significantly fewer peritoneal bacteria by 24 h [CFU (log) = 6.04 versus 4.99 for vehicle versus chemokine treatment; p < 0.05]. Chemokine treatment significantly improved survival at both 5 d (40 versus 72%) and 28 d (27 versus 52%; p < 0.02 vehicle versus chemokines). These data demonstrate that early, local treatment with CXC chemokines enhances neutrophil recruitment and clearance of bacteria as well as improves survival in the CLP model of sepsis.  相似文献   

15.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

16.
Chemokines are a large family of chemotactic cytokines playing crucial roles in the innate immune response. In the present study, we report the cloning of a CXC chemokine gene resembling the closely related CXCL9/CXCL10/CXCL11 from the miiuy croaker Miichthys miiuy (MimiCXC). Both 5'-RACE and 3'-RACE were carried out in order to obtain the complete cDNA, which consists of a 73 bp 5'-UTR, a 369 bp open reading frame encoding 122 amino acids and a 715 bp 3'-UTR. The deduced MimiCXC contains a 19-aa signal peptide and a 103-aa mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CXC chemokines. It shares 4.8%-65.6% sequence identities to mammalian CXC chemokines and the highest sequence identity of 65.6% is between MimiCXC and CXCL10 chemokine. Three exons and two introns were identified in MimiCXC gene. The MimiCXC gene was constitutively expressed in all tissues tested, although at different levels. Upon induction with Vibrio anguillarum, MimiCXC gene expression was up-regulated in kidney and spleen, however, down-regulated in liver. These results indicate that MimiCXC may be involved in immune responses as well as homeostatic processes in miiuy croaker.  相似文献   

17.
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype.  相似文献   

18.
Oxidative stress from ozone (O(3)) exposure augments airway neutrophil recruitment and chemokine production. We and others have shown that severe and sudden asthma is associated with airway neutrophilia, and that O(3) oxidative stress is likely to augment neutrophilic airway inflammation in severe asthma. However, very little is known about chemokines that orchestrate oxidative stress-induced neutrophilic airway inflammation in vivo. To identify these chemokines, three groups of BALB/c mice were exposed to sham air, 0.2 ppm O(3), or 0.8 ppm O(3) for 6 h. Compared with sham air, 0.8 ppm O(3), but not 0.2 ppm O(3), induced pronounced neutrophilic airway inflammation that peaked at 18 h postexposure. The 0.8 ppm O(3) up-regulated lung mRNA of CXCL1,2,3 (mouse growth-related oncogene-alpha and macrophage-inflammatory protein-2), CXCL10 (IFN-gamma-inducible protein-10), CCL3 (macrophage-inflammatory protein-1alpha), CCL7 (monocyte chemoattractant protein-3), and CCL11 (eotaxin) at 0 h postexposure, and expression of CXCL10, CCL3, and CCL7 mRNA was sustained 18 h postexposure. O(3) increased lung protein levels of CXCL10, CCL7, and CCR3 (CCL7R). The airway epithelium was identified as a source of CCL7. The role of up-regulated chemokines was determined by administering control IgG or IgG Abs against six murine chemokines before O(3) exposure. As expected, anti-mouse growth-related oncogene-alpha inhibited neutrophil recruitment. Surprisingly, Abs to CCL7 and CXCL10 also decreased neutrophil recruitment by 63 and 72%, respectively. These findings indicate that CCL7 and CXCL10, two chemokines not previously reported to orchestrate neutrophilic inflammation, play a critical role in mediating oxidative stress-induced neutrophilic airway inflammation. These observations may have relevance in induction of neutrophilia in severe asthma.  相似文献   

19.
NK cells can migrate into sites of inflammatory responses or malignancies in response to chemokines. Target killing by rodent NK cells is restricted by opposing signals from inhibitory and activating Ly49 receptors. The rat NK leukemic cell line RNK16 constitutively expresses functional receptors for the inflammatory chemokine CXC chemokine ligand (CXCL)10 (CXCR3) and the homeostatic chemokine CXCL12 (CXCR4). RNK-16 cells transfected with either the activating Ly49D receptor or the inhibitory Ly49A receptor were used to examine the effects of NK receptor ligation on CXCL10- and CXCL12-mediated chemotaxis. Ligation of Ly49A, either with Abs or its MHC class I ligand H2-D(d), led to a decrease in chemotactic responses to either CXCL10 or CXCL12. In contrast, Ly49D ligation with Abs or H2-D(d) led to an increase in migration toward CXCL10, but a decrease in chemotaxis toward CXCL12. Ly49-dependent effects on RNK-16 chemotaxis were not the result of surface modulation of CXCR3 or CXCR4 as demonstrated by flow cytometry. A mutation of the Src homology phosphatase-1 binding motif in Ly49A completely abrogated Ly49-dependent effects on both CXCL10 and CXCL12 chemotaxis, suggesting a role for Src homology phosphatase-1 in Ly49A/chemokine receptor cross-talk. Ly49D-transfected cells were pretreated with the Syk kinase inhibitor Piceatannol before ligation, which abrogated the previously observed changes in migration toward CXCL10 and CXCL12. Piceatannol also abrogated Ly49A-dependent inhibition of chemotaxis toward CXCL10, but not CXCL12. Collectively, these data suggest that Ly49 receptors can influence NK cell chemotaxis within sites of inflammation or tumor growth upon interaction with target cells.  相似文献   

20.
A variety of chemokines has been shown to recruit human bone marrow-derived mesenchymal stem cells (MSC) and may be potential candidates for chemokine-based tissue regeneration approaches. The aim of our study was to determine whether the chemokine CXCL7 stimulates migration of human bone marrow-derived MSC and to analyze the effect of CXCL7 on the recruitment of MSC on the broad molecular level. Chemotaxis assays documented that high doses of CXCL7 significantly recruited MSC. Gene expression profiling using oligonucleotide microarrays showed that MSC treated with CXCL7 differentially expressed genes related to cell migration, cell adhesion and extracellular matrix remodeling. Pathway analysis showed that CXCL7 induced the expression of all chemokines binding the interleukin (IL) receptors A and B, CXCR1 and CXCR2, as well as the IL6 signal transducer (gp130) and its ligands IL6 and leukemia inhibitory factor (LIF). Induction of differentially expressed chemokines CXCL1-3, CXCL5, and CXCL6 as well as LIF and gp130 in MSC by CXCL7 was verified by real-time polymerase chain reaction. Immunoassay of cell culture supernatants confirmed elevated levels of the interleukins 6 and 8 in MSC upon treatment with CXCL7. Chemotaxis assays showed that interleukin 6 did not recruit MSC. In conclusion, CXCL7 significantly stimulates the migration of human MSC in vitro. Pathway analysis suggests that recruitment of human MSC by CXCL7 is supported by the induction of ligands of the interleukin 8 receptors, synergistically activating the respective signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号