首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although protein palmitoylation is essential for targeting many important signaling proteins to the plasma membrane, the mechanism by which palmitoylation occurs is uncharacterized, since the enzyme(s) responsible for this modification remain unidentified. To study palmitoyl acyl transferase (PAT) activity, we developed an in vitro palmitoylation (IVP) assay using a fluorescently labeled substrate peptide, mimicking the N-terminal palmitoylation motif of proteins such as non-receptor Src-related tyrosine kinases. The palmitoylated and non-palmitoylated forms of the peptide were resolved by reverse-phase HPLC and detected by fluorescence. The method was optimized for PAT activity using lysates from the MCF-7 and Hep-G2 human tumor cell lines. The PAT activity was inhibited by boiling, reducing the incubation temperature, or adding 10 microM 2-bromopalmitate, a known palmitoylation inhibitor. This IVP assay provides the first method that is suitable to study all facets of the palmitoylation reaction, including peptide palmitoylation by PAT(s), depalmitoylation by thioesterases, and evaluation of potential palmitoylation inhibitors.  相似文献   

2.
Reversible protein palmitoylation is one of the most important posttranslational modifications that has been implicated in the regulation of protein signaling, trafficking, localizing and enzymatic activities in cells and tissues. In order to achieve a precise understanding of mechanisms and functions of protein palmitoylation as well as its roles in physiological processes and disease progression, it is necessary to develop techniques that can qualitatively and quantitatively monitor the dynamic protein palmitoylation in vivo and in vitro. This review will highlight recent advances in both chemical and genetic encoded probes that have been developed for accurate analysis of protein palmitoylation, including identification and quantification of acyl moieties and palmitoylated proteins, localization of amino acid residues on which acyl moieties are attached, and imaging of cellular distributions of palmitoylated proteins. The role of major techniques of fluorescence microscopy and mass spectrometry in facilitating the analysis of protein palmitoylation will also be explored.  相似文献   

3.
Palmitoylation is a post-translational lipid modification involving the attachment of a 16-carbon saturated fatty acid, palmitate, to cysteine residues of substrate proteins through a labile thioester bond [reviewed in1]. Palmitoylation of a substrate protein increases its hydrophobicity, and typically facilitates its trafficking toward cellular membranes. Recent studies have shown palmitoylation to be one of the most common lipid modifications in neurons1, 2, suggesting that palmitate turnover is an important mechanism by which these cells regulate the targeting and trafficking of proteins. The identification and detection of palmitoylated substrates can therefore better our understanding of protein trafficking in neurons.Detection of protein palmitoylation in the past has been technically hindered due to the lack of a consensus sequence among substrate proteins, and the reliance on metabolic labeling of palmitoyl-proteins with 3H-palmitate, a time-consuming biochemical assay with low sensitivity. Development of the Acyl-Biotin Exchange (ABE) assay enables more rapid and high sensitivity detection of palmitoylated proteins2-4, and is optimal for measuring the dynamic turnover of palmitate on neuronal proteins. The ABE assay is comprised of three biochemical steps (Figure 1): 1) irreversible blockade of unmodified cysteine thiol groups using N-ethylmaliemide (NEM), 2) specific cleavage and unmasking of the palmitoylated cysteine''s thiol group by hydroxylamine (HAM), and 3) selective labeling of the palmitoylated cysteine using a thiol-reactive biotinylation reagent, biotin-BMCC. Purification of the thiol-biotinylated proteins following the ABE steps has differed, depending on the overall goal of the experiment.Here, we describe a method to purify a palmitoylated protein of interest in primary hippocampal neurons by an initial immunoprecipitation (IP) step using an antibody directed against the protein, followed by the ABE assay and western blotting to directly measure palmitoylation levels of that protein, which is termed the IP-ABE assay. Low-density cultures of embryonic rat hippocampal neurons have been widely used to study the localization, function, and trafficking of neuronal proteins, making them ideally suited for studying neuronal protein palmitoylation using the IP-ABE assay. The IP-ABE assay mainly requires standard IP and western blotting reagents, and is only limited by the availability of antibodies against the target substrate. This assay can easily be adapted for the purification and detection of transfected palmitoylated proteins in heterologous cell cultures, primary neuronal cultures derived from various brain tissues of both mouse and rat, and even primary brain tissue itself.  相似文献   

4.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

5.
A well known function of palmitoylation is to promote protein binding to cell membranes. Until recently, it was unclear what additional roles, if any, palmitoylation has in controlling protein localization in cells. Recent studies of palmitoylated forms of the small GTPase Ras have now revealed that palmitoylation plays multiple roles in the regulation of protein trafficking, including targeting proteins into the secretory pathway and recycling proteins between the plasma membrane and Golgi complex. We here describe how quantitative fluorescence microscopy and photobleaching approaches can be used to study the intracellular targeting and trafficking of GFP-tagged palmitoylated proteins in living cells. We discuss (1) general considerations for fluorescence recovery after photobleaching (FRAP) measurements of GFP-tagged proteins; (2) FRAP-based assays to test the strength of binding of palmitoylated proteins to cell membranes; (3) methods to establish the kinetics and mechanisms of recycling of palmitoylated proteins between the Golgi complex and the plasma membrane; (4) the use of the palmitoylation inhibitor 2-bromo-palmitate as a tool to study the dynamic regulation of protein targeting and trafficking by palmitate turnover.  相似文献   

6.
As shown in the companion article, tubulin is posttranslationally modified in vivo by palmitoylation. Our goal in this study was to identify the palmitoylation sites by protein structure analysis. To obtain quantities of palmitoylated tubulin required for this analysis, a cell-free system for enzymatic [3H]palmitoylation was developed and characterized in our companion article. We then developed a methodology to examine directly the palmitoylation of all 451 amino acids of alpha-tubulin. 3H-labeled palmitoylated alpha-tubulin was cleaved with cyanogen bromide (CNBr). The CNBr digest was resolved according to peptide size by gel filtration on Sephadex LH60 in formic acid:ethanol. The position of 3H-labeled palmitoylated amino acids in peptides could not be identified by analysis of the Edman degradation sequencer product because the palmitoylated sequencer products were lost during the final derivatization step to phenylthiohydantoin derivatives. Modification of the gas/liquid-phase sequencer to deliver the intermediate anilinothiozolinone derivative, rather than the phenylthiohydantoin derivative, identified the cycle containing the 3H-labeled palmitoylated residue. Therefore, structure analysis of peptides obtained from gel filtration necessitated dual sequencer runs of radioactive peptides, one for sequence analysis and one to identify 3H-labeled palmitoylated amino acids. Further cleavage of the CNBr peptides by trypsin and Lys-C protease, followed by gel filtration on Sephadex LH60 and dual sequencer runs, positioned the 3H-labeled palmitoylated amino acid residues in peptides. Integration of all the available structural information led to the assignment of the palmitoyl moiety to specific residues in alpha-tubulin. The palmitoylated residues in alpha-tubulin were confined to cysteine residues only. The major site for palmitoylation was cysteine residue 376.  相似文献   

7.
Palmitoylated proteins have been implicated in several disease states including Huntington's, cardiovascular, T-cell mediated immune diseases, and cancer. To proceed with drug discovery efforts in this area, it is necessary to: identify the target enzymes, establish efficient assays for palmitoylation, and conduct high-throughput screening to identify inhibitors. The primary objectives of this review are to examine the types of assays used to study protein palmitoylation and to discuss the known inhibitors of palmitoylation. Six main palmitoylation assays are currently in use. Four assays, radiolabeled palmitate incorporation, fatty acyl exchange chemistry, MALDI-TOF MS and azido-fatty acid labeling are useful in the identification of palmitoylated proteins and palmitoyl acyltransferase (PAT) enzymes. Two other methods, the in vitro palmitoylation (IVP) assay and a cell-based peptide palmitoylation assay, are useful in the identification of PAT enzymes and are more amenable to screening for inhibitors of palmitoylation. To date, two general types of palmitoylation inhibitors have been identified. Lipid-based palmitoylation inhibitors broadly inhibit the palmitoylation of proteins; however, the mechanism of action of these compounds is unknown, and each also has effects on fatty acid biosynthesis. Conversely, several non-lipid palmitoylation inhibitors have been shown to selectively inhibit the palmitoylation of different PAT recognition motifs. The selective nature of these compounds suggests that they may act as protein substrate competitors, and may produce fewer non-specific effects. Therefore, these molecules may serve as lead compounds for the further development of selective inhibitors of palmitoylation, which may lead to new therapeutics for cancer and other diseases.  相似文献   

8.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.  相似文献   

9.
Numerous proteins that are involved in cell signaling and viral replication require post-translational modification by palmitoylation to function properly. The molecular details by which this palmitoyl modification affects protein function remain poorly understood. To facilitate in vitro biochemical and structural studies of the role of palmitoylation on protein function, a method was developed for alkylating peptides with saturated C16 groups at cysteine residues and demonstrated using peptides derived from the palmitoylated region of Sindbis virus E2 glycoprotein. The synthetic approach takes advantage of disulfide chemistry to specifically modify only the cysteine residues within peptides and covalently links C16 groups via disulfide bridges using a new thioalkylating reagent, hexyldexyldithiopyridine. The chemistry presented here takes place in solution under mild conditions without the need for protection of the peptide functional groups. A method for purifying these modified peptides is also described. This protocol can be of general use to investigators studying the role of palmitoylation in biological systems.  相似文献   

10.
Nearly all alpha subunits of heterotrimeric GTP-binding regulatory proteins (G proteins) are palmitoylated at cysteine residues near the N terminus. A regulated cycle of palmitoylation could provide a mechanism for modulating G protein signaling by affecting protein interactions and localization of the subunit. In the present studies we utilized both [(3)H]palmitate incorporation and pulse-chase techniques to address the dynamics of alpha(i) palmitoylation in Chinese hamster ovary cells. Both techniques demonstrated a dose- and time-dependent change in [(3)H]palmitate labeling of alpha(i) upon activation of stably expressed 5-hydroxytryptamine-1A receptors by the agonist (+/-)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (DPAT), with an EC(50) of approximately 10 nm. For the incorporation assay, DPAT elicited an approximate doubling in labeling at the earliest time point measured. For the pulse-chase assay, DPAT promoted a significant loss of radiolabel almost equally as fast. These data demonstrate that the exchange of palmitate on alpha(i) is increased upon stimulation of 5-hydroxytryptamine-1A receptors through the combined processes of depalmitoylation and palmitoylation. These results provide the basis for extending the concept of regulated exchange of palmitate beyond G(s) and provide a framework for exploring the specific functional attributes of the palmitoylated and depalmitoylated forms of subunit.  相似文献   

11.
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.  相似文献   

12.
The native Goα was purified from bovine brain cortex and palmitoylated in vitro. The in vitro palmitoylation site was the same as that in vivo. The internal palmitoylation of purified native Goα was found to be largely maintained. The apparant palmitoylation ratio was significantly increased after the Goa was treated with DTT. The GTPg S binding characteristic of Goα was not influenced by palmitoylation, however, the affinity for LUVs was increased dramatically. The in vitro palmitoylation model of Goα provides a better basis for studying the functional role of G protein palmitoylation in signal transduction.  相似文献   

13.
Mutations in the depalmitoylating enzyme gene, PPT1, cause the infantile form of Neuronal Ceroid Lipofuscinosis (NCL), an early onset neurodegenerative disease. During recent years there have been different therapeutic attempts including enzyme replacement. Here we show that PPT1 is palmitoylated in vivo and is a substrate for two palmitoylating enzymes, DHHC3 and DHHC7. The palmitoylated protein is detected in both cell lysates and medium. The presence of PPT1 with palmitoylated signal peptide in the cell medium suggests that a subset of the protein is secreted by a nonconventional mechanism. Using a mutant form of PPT1, C6S, which was not palmitoylated, we further demonstrate that palmitoylation does not affect intracellular localization but rather that the unpalmitoylated form enhanced the depalmitoylation activity of the protein. The calculated Vmax of the enzyme was significantly affected by the palmitoylation, suggesting that the addition of a palmitate group is reminiscent of adding a noncompetitive inhibitor. Thus, we reveal the existence of a positive feedback loop, where palmitoylation of PPT1 results in decreased activity and subsequent elevation in the amount of palmitoylated proteins. This positive feedback loop is likely to initiate a vicious cycle, which will enhance disease progression. The understanding of this process may facilitate enzyme replacement strategies.  相似文献   

14.
Protein palmitoylation is emerging as an important post-translational modification in development as well as in the establishment and progression of diseases such as cancer. This chapter describes the use of fluorescent lipidated peptides to characterize palmitoyl acyltransferase (PAT) activities in vitro and in intact cells. The peptides mimic two motifs that are enzymatically palmitoylated, i.e. C-terminal farnesyl and N-terminal myristoyl sequences. These substrate peptides can be separated from the palmitoylated product peptides by reversed-phase HPLC, detected and quantified by the fluorescence of their NBD label. Through these methods, the activities of PATs toward these alternate substrates in isolated membranes or intact cells can be quantified. The in vitro assay has been used to characterize human PATs and to identify inhibitors of these enzymes. The cellular assay has been useful in elucidating the kinetics of protein palmitoylation by PATs in situ, and the sub-cellular distribution of the palmitoylated products.  相似文献   

15.
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane α-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film.  相似文献   

16.
Palmitoylation of Sonic Hedgehog (Shh) is critical for effective long- and short-range signaling. Genetic screens uncovered a potential palmitoylacyltransferase (PAT) for Shh, Hhat, but the molecular mechanism of Shh palmitoylation remains unclear. Here, we have developed and exploited an in vitro Shh palmitoylation assay to purify Hhat to homogeneity. We provide direct biochemical evidence that Hhat is a PAT with specificity for attaching palmitate via amide linkage to the N-terminal cysteine of Shh. Other palmitoylated proteins (e.g. PSD95 and Wnt) are not substrates for Hhat, and Porcupine, a putative Wnt PAT, does not palmitoylate Shh. Neither autocleavage nor cholesterol modification is required for Shh palmitoylation. Both the Shh precursor and mature protein are N-palmitoylated by Hhat, and the reaction occurs during passage through the secretory pathway. This study establishes Hhat as a bona fide Shh PAT and serves as a model for understanding how secreted morphogens are modified by distinct PATs.  相似文献   

17.
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane alpha-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film.  相似文献   

18.
S-palmitoylation is a posttranslational modification that regulates membrane-protein interactions. However, palmitate is more than just a hydrophobic membrane anchor, as many different types of protein are palmitoylated, including transmembrane proteins. Indeed, there is now compelling evidence that palmitoylation plays a key role in regulating various aspects of protein sorting within the cell.  相似文献   

19.
The native Goα was purified from bovine brain cortex and palmitoylated in vitro. The in vitro palmitoylation site was the same as that in vivo. The internal palmitoylation of purified native Goα was found to be largely maintained. The apparent palmitoylation ratio was significantly increased after the Goα was treated with DTT. The GTPγS binding characteristic of Goα was not influenced by palmitoylation, however, the affinity for LUVs was increased dramatically. The in vitro palmitoylation model of Goα provides a better basis for studying the functional role of G protein palmitoylation in signal transduction.  相似文献   

20.
Covalent attachment of palmitate to proteins is a post-translational modification that exerts diverse effects on protein localization and function. The three key technical approaches required for an investigator to determine the role of palmitoylation of your favorite palmitoylated protein (YFPP) are methods to: (1) detect YFPP palmitoylation; (2) alter or inhibit palmitoylation of YFPP; (3) determine the functional significance of altered YFPP palmitoylation. Here, I describe experimental methods to address these three issues. Both radioactive (radiolabeling with [(3)H]palmitate or (125)I-IC16 palmitate) and non-radioactive (chemical labeling and mass spectrometry) methods to detect palmitoylated proteins are presented. Next, techniques to inhibit protein palmitoylation are described. These include site specific mutagenesis, and treatment of cells with inhibitors of protein palmitoylation, including 2-bromopalmitate, cerulenin, and tunicamycin. Alternative methods to replace palmitate with other fatty acids are also presented. Finally, general approaches to determining the effect of altered palmitoylation status on YFPP association with membranes and lipid rafts, as well as signal transduction, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号