首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

2.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

3.
4.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

5.
The assembly of nucleocapsids is an essential step in the replicative cycle of vesicular stomatitis virus (VSV). In this study, we have examined the early events of vesicular stomatitis virus nucleocapsid assembly in BHK-21 cells. Nuclease-resistant intracellular nucleocapsids were isolated at various stages of assembly and analyzed for RNA and protein contents. The smallest ribonucleoprotein complex formed during nucleocapsid assembly contains the 5'-terminal 65 nucleotides of nascent viral RNA complexed with the viral proteins N and NS. Elongation of the assembling nucleocapsids proceeds unidirectionally towards the 3' terminus by the sequential addition of viral proteins which incrementally protect short stretches of the growing RNA chain. Pulse-chase studies show that the assembling nucleocapsids can be chased into full-length nucleocapsids which are incorporated into mature virions. Our results also suggest an involvement of the cytoskeletal framework during nucleocapsid assembly.  相似文献   

6.
We have studied the transport of the Uukuniemi virus membrane glycoproteins in baby hamster kidney and chick embryo cells by using a temperature-sensitive mutant (ts12). Uukuniemi virus assembles in the Golgi complex, where both glycoproteins G1 and G2 and nucleocapsid protein N accumulate (E. Kuismanen, B. B?ng, M. Hurme, and R. F. Pettersson, J. Virol. 51:137-146, 1984). At the restrictive temperature (39 degrees C), the glycoproteins of ts12 were transported to the Golgi complex as in wild-type, virus-infected cells, whereas the nucleocapsid protein failed to accumulate there. Pulse-chase labeling followed by immunoprecipitation and treatment with endo-beta-N-acetylglucosaminidase H showed that G1 synthesized at 39 degrees C in ts12-infected cells had an altered mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting a lack of terminal glycosylation. The typical Uukuniemi virus-induced vacuolization and expansion of the Golgi complex could be seen also in ts12-infected cells at 39 degrees C, although no virus particles were formed. This suggests that the morphological changes were induced by the Uukuniemi virus glycoproteins. In wild-type virus- or ts12-infected cells, G1 and G2 could not be chased out from the Golgi complex even after 6 h of treatment with cycloheximide. The glycoproteins were thus retained in the Golgi even under conditions when no virus maturation took place and when nucleocapsids did not accumulate in the Golgi region. Accordingly, the glycoproteins of Uukuniemi virus were found to have properties resembling those of Golgi-specific proteins. This virus model system may be useful in studying the synthesis and transport of membrane proteins that are transported to and retained in the Golgi.  相似文献   

7.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

8.
Cytoplasmic extracts of Vero cells infected with wild-strain Edmonston measles virus were found to contain two and probably three distinct species of nucleocapsids. Species sedimenting at 200 and 110S contained RNA which sedimented at 50 and 16 to 18S, respectively. The third nucleocapsid species which sedimented at 170S was not present in all experiments and was not characterized in detail. Essentially all 200 and 170S, as well as a portion of the 110S, nucleocapsids were membrane associated and probably present in part in cell-associated virions. Five of six plaque purified strains derived from wild-type Edmonston virus produced only 200S nucleocapsids. One of these five plaque-purified strains subsequently produced both 200 and 110S nucleocapsids after being passaged by using undiluted inocula. These results suggest that measles virus may produce distinct classes of defective virus containing short nucleocapsids and subgenomic viral RNA.  相似文献   

9.
Twenty-four temperature-sensitive mutants of mengovirus were characterized physiologically with respect to phenotype. The mutants were separated into four classes on the basis of viral RNA synthesis. L-67-S cells infected with five of the mutants synthesized little viral RNA at 39.5 C. These mutants are designated RNA-. One mutant is designated RNA* since its RNA synthesis is altered at both 39.5 and 31.5 C. The other mutants were divided into two groups, RNA plus or minus (25 TO 49% of wild-type RNA synthesis) and RNA plus (50 to 100% of wild-type RNA synthesis). The time of expression of the mutation in the RNA- mutants was estimated from the results of reciprocal temperature-shift experiments. The mutatation in ts12 appears to be expressed at the time RNA synthesis normally begins. The defect in three of the mutants was expressed 1 to 2 h before RNA synthesis is normally detectable. Protein synthesis is required before RNA synthesis begins when the cells are shifted from 39.5 to 31.5 C. The RNA polymerase synthesized by cells infected with these RNA- mutants at 31.5 C was stable and fully active when assayed at 39.5 C in vitro. The sedimentation profiles of the viral RNA synthesized by cells infected with RNA plus and RNA plus or minus mutants are similar to wild-type profiles with the exception of ts148. Cells infected with this RNA plus or minus mutant synthesize RNA that sediments in a sucrose gradient like replicative-intermediate RNA, but little mature viral RNA is evident. The results of step-up experiments indicate that the temperature-sensitive period for the majority of the RNA plus and RNA plus and minus mutants extends through most of the replicative cycle. The temperature-sensitive defect of four of the mutants, however, was expressed in the first hour, suggesting that some undefined early function is required for the eventual maturation of mengovirus. The virions of three of the RNA- mutants were more thermolabile than wild-type virions. Five of the RNA plus and RNA plus or minus mutants were also thermolabile. Genetic complementation at a significant level was not detectable in mixed infections of the mutants described.  相似文献   

10.
Specific Sindbis virus-coded function for minus-strand RNA synthesis.   总被引:31,自引:26,他引:5       下载免费PDF全文
The synthesis of minus-strand RNA was studied in cell cultures infected with the heat-resistant strain of Sindbis virus and with temperature-sensitive (ts) belonging to complementation groups A, B, F, and G, all of which exhibited an RNA-negative (RNA-) phenotype when infection was initiated and maintained at 39 degrees C, the nonpermissive temperature. When infected cultures were shifted from 28 degrees C (the permissive temperature) to 39 degrees C at 3 h postinfection, the synthesis of viral minus-strand RNA ceased in cultures infected with ts mutants of complementation groups B and F, but continued in cultures infected with the parental virus and mutans of complementation groups A and G. In cultures infected with ts11 of complementation group B, the synthesis of viral minus-strand RNA ceased, whereas the synthesis of 42S and 26S plus-strand RNAs continued for at least 5 h after the shift to 39 degrees C. However, when ts11-infected cultures were returned to 28 degrees C 1 h after the shift to 39 degrees C, the synthesis of viral minus-strand RNA resumed, and the rate of viral RNA synthesis increased. The recovery of minus-strand synthesis translation of new proteins. We conclude that at least one viral function is required for alphavirus minus-strand synthesis that is not required for plus-strand synthesis. In cultures infected with ts6 of complementation group F, the syntheses of both viral plus-strand and minus-strand RNAs were drastically reduced after the shift to 39 degrees C. Since ts6 failed to synthesize both plus-strand and minus-strand RNAs after the shift to 39 degrees C, at least one common viral component appears to be required for the synthesis of both minus-strand and plus-strand RNAs.  相似文献   

11.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

12.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

13.
14.
The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.  相似文献   

15.
Infection of chicken embryo cells with vesicular stomatitis (VS) virus resulted in variable production of three classes of intracellular viral ribonucleocapsids with sedimentation coefficients of approximately 140S, 110S, and 80S, as well as three corresponding classes of released virions designated B, LT, and T. Intracellular nucleocapsids of each class contained three proteins of which the major N protein was firmly bound, and the minor L and NS1 proteins were readily dissociated with 0.5 m NaCl. The ribonucleic acid (RNA) species extracted from B, LT, and T virions, and from corresponding intracellular nucleocapsids, contained RNA species with approximate molecular weights of 3.2 x 10(6), 2.0 x 10(6), and 10(6), respectively, as determined by polyacrylamide gel electrophoresis. These values are roughly equivalent to sedimentation coefficients of 42S, 28S, and 23S for each of the virion and nucleocapsid RNA species. Cells infected at high multiplicity with undiluted passage VS virus gave rise primarily to virions and nucleocapsids containing 23S RNA, whereas cells productively infected with purified B virions produced predominantly B and LT virions and nucleocapsids. At late stages in the productive cycle of infection, more virions containing 42S RNA were produced, but the intracellular pool of nucleocapsids containing 28S and 23S RNA remained relatively constant. Additional studies by more refined techniques are required to test the hypothesis that nucleocapsids containing 28S and 23S RNA are precursors of the 42S RNA in infectious VS-B virions and that production of defective T and LT virions results from failure of ligation of the RNA precursors.  相似文献   

16.
17.
Temperature-sensitive (ts) mutants of vesicular stomatitis virus belonging to complementation groups I, II and IV inhibited the replication of wild-type vesicular stomatitis virus when mixed infections were carried out in BHK21 cells at 32, 37, and 39.5 C. The group IV mutant (ts G 41) was most effective in this regard; wild-type virus yields were inhibited almost 1,000-fold in mixed infections with this mutant at 32 C. In the case of group I and II mutants, inhibition of wild-type virus replication at 37 and 39.5 C was accompanied by an enhancement (up to 15,000-fold) of the yields of the coinfecting ts mutant. The yields of the group IV mutant (ts G 41) were not enhanced by mixed infections with wild-type virus at any temperature, although this mutant inhibited wild-type virus replication at all temperatures. The dominance of the replication of ts mutants at 37 C provides a rationale for the selection and maintenance of ts virus in persistently infected cells.  相似文献   

18.
19.
The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus at 37 degrees C resulted in formation of a complex between one of the viral glycoproteins, E1, and the viral nucleocapsid. This was caused by a temperature-dependent conformational change in E1, resulting in aggregation of E1 and interaction with the viral RNA in the nucleocapsid. E1 also bound rRNA. The E1-nucleocapsid complexes can be distinguished on sucrose and Renografin density gradients from native viral nucleocapsids. The separation of the membrane glycoprotein E1 from the peplomeric glycoprotein E2 permitted preparation of antisera against these isolated proteins. A model is proposed for the arrangement of the three major structural proteins in the coronavirus A59 virion in relation to the viral envelope and RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号