首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agonist-stimulated high affinity GTPase activity of fusion proteins between the alpha(2A)-adrenoreceptor and the alpha subunits of forms of the G proteins G(i1), G(i2), G(i3), and G(o1), modified to render them insensitive to the action of pertussis toxin, was measured following transient expression in COS-7 cells. Addition of a recombinant regulator of G protein signaling protein, RGS4, did not significantly affect basal GTPase activity nor agonist stimulation of the fusion proteins containing Galpha(i1) and Galpha(i3) but markedly enhanced agonist-stimulation of the proteins containing Galpha(i2) and Galpha(o1.) The effect of RGS4 on the alpha(2A)-adrenoreceptor-Galpha(o1) fusion protein was concentration-dependent with EC(50) of 30 +/- 3 nm and the potency of the receptor agonist UK14304 was reduced 3-fold by 100 nm RGS4. Equivalent reconstitution with Asn(88)-Ser RGS4 failed to enhance agonist function on the alpha(2A)-adrenoreceptor-Galpha(o1) or alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins. Enzyme kinetic analysis of the GTPase activity of the alpha(2A)-adrenoreceptor-Galpha(o1) and alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins demonstrated that RGS4 both substantially increased GTPase V(max) and significantly increased K(m) of the fusion proteins for GTP. The increase in K(m) for GTP was dependent upon RGS4 amount and is consistent with previously proposed mechanisms of RGS function. Agonist-stimulated GTPase turnover number in the presence of 100 nm RGS4 was substantially higher for alpha(2A)-adrenoreceptor-Galpha(o1) than for alpha(2A)-adrenoreceptor-Galpha(i2). These studies demonstrate that although RGS4 has been described as a generic stimulator of the GTPase activity of G(i)-family G proteins, selectivity of this interaction and quantitative variation in its function can be monitored in the presence of receptor activation of the G proteins.  相似文献   

2.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   

3.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

4.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

5.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

6.
Three BODIPY GTPgammaS analogs (FL, 515, and TR), BODIPY FL GppNHp and BODIPY FL GTP molecules were synthesized as possible fluorescent probes to study guanine nucleotide binding spectroscopically. Binding to G(alphao) increases baseline analog fluorescence by 6-, 8.5-, 2.8-, 3.5-, and 3.0-fold, respectively. Binding of GTPgammaS and GppNHp analogs to G(alphao) is of high affinity (K(D) 11, 17, 55, and 110 nM, respectively) and reaches a stable plateau while fluorescence of BODIPY FL GTP shows a transient increase which returns to baseline. Furthermore, BODIPY FL GTPgammaS shows varying affinities for alpha(o), alpha(s), alpha(i1), and alpha(i2) (6, 58, 150, and 300 nM). The affinities of BODIPY FL GppNHp for all four G(alpha) subunits are 10-fold lower than for BODIPY FL GTPgammaS. Half-times for the fluorescence increase are consistent with known GDP release rates for those proteins. Enhancement of fluorescence upon binding the G(alpha) subunit is most likely due to a rotation around the gamma-thiol (GTPgammaS) or the 3' ribose-hydroxyl (GppNHp) bond to relieve the quenching of BODIPY fluorescence by the guanine base. Binding to G(alpha) exposes the BODIPY moiety to the external environment, as seen by an increase in sodium iodide quenching. The visible excitation and emission spectra and high fluorescence levels of these probes permit robust real-time detection of nucleotide binding.  相似文献   

7.
Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.  相似文献   

8.
Heterotrimeric G proteins are involved in the transduction of hormonal and sensory signals across plasma membranes of eukaryotic cells. Hence, they are a critical point of control for a variety of agents that modulate cellular function. Activation of these proteins is dependent on GTP binding to their alpha (Galpha) subunits. Regulators of G protein signaling (RGS) bind specifically to activated Galpha proteins, potentiating the intrinsic GTPase activity of the Galpha proteins and thus expediting the termination of Galpha signaling. Although there are several points in most G protein controlled signaling pathways that are affected by reversible covalent modification, little evidence has been shown addressing whether or not the functions of RGS proteins are themselves regulated by such modifications. We report in this study the acute functional regulation of RGS10 thru the specific and inducible phosphorylation of RGS10 protein at serine 168 by cAMP-dependent kinase A. This phosphorylation nullifies the RGS10 activity at the plasma membrane, which controls the G protein-dependent activation of the inwardly rectifying potassium channel. Surprisingly, the phosphorylation-mediated attenuation of RGS10 activity was not manifested in an alteration of its ability to accelerate GTPase activity of Galpha. Rather, the phosphorylation event correlates with translocation of RGS10 from the plasma membrane and cytosol into the nucleus.  相似文献   

9.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

10.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

11.
12.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

13.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and are thus crucial to the timing of G protein-coupled receptor (GPCR) signaling. Small molecule inhibition of RGS proteins is an attractive therapeutic approach to diseases involving dysregulated GPCR signaling. Methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986) was reported as a selective RGS4 inhibitor, but with an unknown mechanism of action [D.L. Roman, J.N. Talbot, R.A. Roof, R.K. Sunahara, J.R. Traynor, R.R. Neubig, Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay, Mol. Pharmacol. 71 (2007) 169-75]. Here, we describe its mechanism of action as covalent modification of RGS4. Mutant RGS4 proteins devoid of surface-exposed cysteine residues were characterized using surface plasmon resonance and FRET assays of Galpha binding, as well as single-turnover GTP hydrolysis assays of RGS4 GAP activity, demonstrating that cysteine-132 within RGS4 is required for sensitivity to CCG-4986 inhibition. Sensitivity to CCG-4986 can be engendered within RGS8 by replacing the wildtype residue found in this position to cysteine. Mass spectrometry analysis identified a 153-Dalton fragment of CCG-4986 as being covalently attached to the surface-exposed cysteines of the RGS4 RGS domain. We conclude that the mechanism of action of the RGS protein inhibitor CCG-4986 is via covalent modification of Cys-132 of RGS4, likely causing steric hindrance with the all-helical domain of the Galpha substrate.  相似文献   

14.
It is extremely difficult to detect guanine nucleotide exchange or hydrolysis stimulated by receptors which couple to G(s)alpha. Furthermore, G(s)alpha is largely resistant to the GTPase-activating properties of RGS proteins. Coexpression of the vasopressin V(2) receptor with a series of chimeric G protein alpha subunits in which the C-terminal 6-12 amino acids of G(i1)alpha were replaced with the equivalent sequence of G(s)alpha allowed robust vasopressin-stimulated [(35)S]GTPgammaS binding. Vasopressin did not stimulate the GTPase activity of fusion proteins between the V(2) receptor and either G(s)alpha or G(i1)alpha. However, it produced a concentration-dependent stimulation of V(max) for a V(2) receptor-G(i1)alpha/Gs6alpha fusion protein. This construct bound [(3)H]vasopressin with high affinity and this was competed by other ligands with rank order anticipated for the V(2) receptor. RGS1 enhanced vasopressin stimulation of V(2) receptor-G(i1)alpha/G(s)6alpha in a concentration-dependent manner. RGS-GAIP was substantially less potent. Enzyme kinetic analysis demonstrated that RGS1 increased both V(max) of the GTPase activity and the observed K(m) for GTP, consistent with RGS1 accelerating the rate of GTP hydrolysis of the chimeric G protein, whereas the agonist vasopressin accelerates guanine nucleotide exchange. This approach provides a sensitive assay for V(2) receptor agonist ligands and may be amenable to many other G(s)alpha-coupled receptors.  相似文献   

15.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

16.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

17.
RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a nonreceptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14-Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of coexpressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex to form a stable Ric-8A-Gαi complex in the absence of GTP. In the presence of an activating nucleotide, Ric-8A interacts with the RGS14-Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and binding of GTP to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A coexist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling.  相似文献   

18.
Regulators of G protein signaling (RGS) proteins that contain DEP (disheveled, EGL-10, pleckstrin) and GGL (G protein gamma subunit-like) domains form a subfamily that includes the mammalian RGS proteins RGS6, RGS7, RGS9, and RGS11. We describe the cloning of RGS6 cDNA, the specificity of interaction of RGS6 and RGS7 with G protein beta subunits, and certain biochemical properties of RGS6/beta5 and RGS7/beta5 complexes. After expression in Sf9 cells, complexes of both RGS6 and RGS7 with the Gbeta5 subunit (but not Gbetas 1-4) are found in the cytosol. When purified, these complexes are similar to RGS11/beta5 in that they act as GTPase-activating proteins specifically toward Galpha(o). Unlike conventional G(betagamma) complexes, RGS6/beta5 and RGS7/beta5 do not form heterotrimeric complexes with either Galpha(o)-GDP or Galpha(q)-GDP. Neither RGS6/beta5 nor RGS7/beta5 altered the activity of adenylyl cyclases types I, II, or V, nor were they able to activate either phospholipase C-beta1 or -beta2. However, the RGS/beta5 complexes inhibited beta(1)gamma(2)-mediated activation of phospholipase C-beta2. RGS/beta5 complexes may contribute to the selectivity of signal transduction initiated by receptors coupled to G(i) and G(o) by binding to phospholipase C and stimulating the GTPase activity of Galpha(o).  相似文献   

19.
The heterotrimeric G proteins, G(12) and G(13), mediate signaling between G protein-coupled receptors and the monomeric GTPase, RhoA. One pathway for this modulation is direct stimulation by Galpha(13) of p115 RhoGEF, an exchange factor for RhoA. The GTPase activity of both Galpha(12) and Galpha(13) is increased by the N terminus of p115 Rho guanine nucleotide exchange factor (GEF). This region has weak homology to the RGS box sequence of the classic regulators of G protein signaling (RGS), which act as GTPase-activating proteins (GAP) for G(i) and G(q). Here, the RGS region of p115 RhoGEF is shown to be distinctly different in that sequences flanking the predicted "RGS box" region are required for both stable expression and GAP activity. Deletions in the N terminus of the protein eliminate GAP activity but retain substantial binding to Galpha(13) and activation of RhoA exchange activity by Galpha(13). In contrast, GTRAP48, a homolog of p115 RhoGEF, bound to Galpha(13) but was not stimulated by the alpha subunit and had very poor GAP activity. Besides binding to the N-terminal RGS region, Galpha(13) also bound to a truncated protein consisting only of the Dbl homology (DH) and pleckstrin homology (PH) domains. However, Galpha(13) did not stimulate the exchange activity of this truncated protein. A chimeric protein, which contained the RGS region of GTRAP48 in place of the endogenous N terminus of p115 RhoGEF, was activated by Galpha(13). These results suggest a mechanism for activation of the nucleotide exchange activity of p115 RhoGEF that involves direct and coordinate interaction of Galpha(13) to both its RGS and DH domains.  相似文献   

20.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins that modulate neurotransmitter and G protein signaling. RGS7 and its binding partners Galpha and Gbeta5 are enriched in brain, but biochemical mechanisms governing RGS7/Galpha/Gbeta5 interactions and membrane association are poorly defined. We report that RGS7 exists as one cytosolic and three biochemically distinct membrane-bound fractions (salt-extractable, detergent-extractable, and detergent-insensitive) in brain. To define factors that determine RGS7 membrane attachment, we examined the biochemical properties of recombinant RGS7 and Gbeta5 synthesized in Spodoptera frugiperda insect cells. We have found that membrane-bound but not cytosolic RGS7 is covalently modified by the fatty acid palmitate. Gbeta5 is not palmitoylated. Both unmodified (cytosolic) and palmitoylated (membrane-derived) forms of RGS7, when complexed with Gbeta5, are equally effective stimulators of Galpha(o) GTPase activity, suggesting that palmitoylation does not prevent RGS7/Galpha(o) interactions. The isolated core RGS domain of RGS7 selectively binds activated Galpha(i/o) in brain extracts and is an effective stimulator of both Galpha(o) and Galpha(i1) GTPase activities in vitro. In contrast, the RGS7/Gbeta5 complex selectively interacts with Galpha(o) only, suggesting that features outside the RGS domain and/or Gbeta5 association dictate RGS7-Galpha interactions. These findings define previously unrecognized biochemical properties of RGS7, including the first demonstration that RGS7 is palmitoylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号