首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new putative sigma factor of Myxococcus xanthus.   总被引:5,自引:3,他引:2       下载免费PDF全文
A third putative sigma factor gene, sigC, has been isolated from Myxococcus xanthus by using the sigA gene (formerly rpoD of M. xanthus) as a probe. The nucleotide sequence of sigC has been determined, and an open reading frame of 295 residues (M(r) = 33,430) has been identified. The deduced amino acid sequence of sigC exhibits the features which are characteristic of other bacterial sigma factors. The characterization of a sigC-lacZ strain has demonstrated that sigC expression is induced immediately after cells enter into the developmental cycle and is dramatically reduced at the onset of sporulation. A deletion mutant of sigC grows normally in vegetative culture and is able to develop normally. However, in contrast to the wild-type cells, the sigC deletion mutant cells became capable of forming fruiting bodies and myxospores on semirich agar plates. This suggests that sigC may play a role in expression of genes involved in negatively regulating the initiation of fruiting body formation.  相似文献   

2.
The sigA gene of Anabaena sp. strain PCC 7120, encoding the principal RNA polymerase sigma factor, and the complement of the rpoD oligonucleotide (K. Tanaka, T. Shiina, and H. Takahashi, Science 242:1040-1042, 1988) were used as probes to isolate two genes, sigB and sigC, which encode two putative sigma factors exhibiting high degrees of similarity to SigA, to HrdA, -B, -C, and -D of Streptomyces coelicolor, and to KatF of Escherichia coli. sigB and sigC code for polypeptides of 332 and 416 amino acids with predicted molecular weights of 38,431 and 47,459, respectively. sigB and sigC mRNAs are detectable only under nitrogen-limiting conditions. Insertional inactivation of sigB and sigC indicates that neither gene alone is essential for nitrogen fixation or heterocyst differentiation.  相似文献   

3.
4.
5.
6.
7.
8.
Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.  相似文献   

9.
10.
11.
12.
13.
The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor sigma(B). Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.  相似文献   

14.
15.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases catalyse the first step of the shikimate pathway. Two unrelated DAHP synthase types have been described in plants and bacteria. Two type II (aroA(A2) and aroA(A5)) and one type I DAHP synthase gene (aroA001) were identified from the myxobacterium Stigmatella aurantiaca Sg a15. Inactivation of aroA(A5) leads to a mutant that is impaired in the biosynthesis of aurachins, which are electron transport inhibitors and contain an anthranilate moiety. Feeding of anthranilic acid to the mutant culture restores production of aurachins. Inactivation of aroA(A2) and aroA001 does not impair production of aurachins or other known secondary metabolites of S. aurantiaca Sg a15.  相似文献   

16.
Myxococcus xanthus has been known to have multiple sigma factors which are considered to play important roles in regulation of gene expression in development. A new gene encoding a putative sigma factor, sigE, was cloned by using a degenerate oligonucleotide corresponding to the conserved region 2.2 of M. xanthus SigA. In the 2.0-kb nucleotide sequence, an open reading frame consisting of 280 amino acid residues was identified. The amino acid sequence of SigE shows high similarity to heat shock sigma factors in bacteria. However, the sigE gene is not induced by heat shock and deletion of sigE does not affect production of heat shock proteins. SigE is expressed during both vegetative growth and fruiting body development. In the deletion mutant of the sigE gene fruiting body formation is initiated earlier and fewer spores are produced than in the parent strain. Interestingly, the deltasigE mutant shows defects in fruiting body formation at 37 degrees C. In addition to SigE, SigB and SigC show high sequence similarity to heat shock sigma factors. However, even if all three sigma factor genes are disrupted, heat shock proteins are still normally induced. A deltasigBdeltasigCdeltasigE triple deletion strain forms fruiting bodies earlier, but sporulats later than the parent strain. Spores from the triple deletion mutant are aberrant and their viability is less than 0.001% compared with that of the parent strain, suggesting that these sigma factors may have redundant functions in multicellular differentiation of M. xanthus.  相似文献   

17.
18.
19.
We describe a general strategy for the identification of genes that are controlled by a specific regulatory factor in vivo and the use of this strategy to identify genes in Bacillus subtilis that are controlled by spo0H, a regulatory gene required for the initiation of sporulation. The general strategy makes use of a cloned regulatory gene fused to an inducible promoter to control expression of the regulatory gene and random gene fusions to a reporter gene to monitor expression in the presence and absence of the regulatory gene product. spo0H encodes a sigma factor of RNA polymerase, sigma H, and is required for the extensive reprograming of gene expression during the transition from growth to stationary phase and during the initiation of sporulation. We identified 18 genes that are controlled by sigma H (csh genes) in vivo by monitoring expression of random gene fusions to lacZ, made by insertion mutagenesis with the transposon Tn917lac, in the presence and absence of sigma H. These genes had lower levels of expression in the absence of sigma H than in the presence of sigma H. Patterns of expression of the csh genes during growth and sporulation in wild-type and spo0H mutant cells indicated that other regulatory factors are probably involved in controlling expression of some of these genes. Three of the csh::Tn917lac insertion mutations caused noticeable phenotypes. One caused a defect in vegetative growth, but only in combination with a spo0H mutation. Two others caused a partial defect in sporulation. One of these also caused a defect in the development of genetic competence. Detailed characterization of some of the csh genes and their regulatory regions should help define the role of spo0H in the regulation of gene expression during the transition from growth to stationary phase and during the initiation of sporulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号