首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fifty strains of bacteria were isolated from six isolates of the nematode Bursaphelenchus mucronatus (Bm) from China and Russia and identified using the BioMerieux Vitek 32 system. In bioassay, 3 bacterial strains showed the high levels of phytotoxin production while 19, 16, and 12 strains showed moderately, low and no phytotoxin production, respectively. Inoculation of 2-month-old Pinus thunbergii seedling with each of the six Bm isolates showed that the mean number of days from inoculation to death of 80% of the seedlings was significantly related to the ratio of the total number of bacterial strains for a nematode isolate to the number of pathogenic bacterial strains of the nematode isolate. The results of inoculation of 3-year-old P. thunbergii seedlings showed that inoculation with either axenic Bm (ABm) or axenic B. xylophilus (ABx) and the pathogenic bacterial strain together were essential for inducing pine wilt. These findings demonstrate that wilt symptoms caused by Bm conform to our earlier hypothesis (Zhao et al., 2003) that pine wilt disease, induced by certain Bx or Bm isolates, is caused by a complex of both the nematodes and their associated pathogenic bacteria. The results also account for the variation in pathogenicity of Bm populations from different parts of the world.  相似文献   

2.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

3.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode.  相似文献   

4.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

5.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

6.
White, Scots, and Austrian 3-year-old pine seedlings were treated with conditions simulating acid rain and inoculated with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1. Oleoresin concentration increased slightly and carbohydrate concentration decreased in all seedlings treated with simulated acid rain (SAR). The changes were significantly increased after inoculation of SAR-treated white and Scots pine seedlings with VPSt-1. Wilting was delayed and nematode reproduction decreased in SAR-treated white pine seedlings inoculated with VPSt-1. SAR-treated Austrian pine seedlings were resistant to VPSt-1, but SAR-treated Scots pine seedlings lost tolerance to VPSt-1 and wilted 50-60 days after inoculation.  相似文献   

7.
Mature trees of eastern white, jack, Scotch, and shortleaf pines were inoculated with 25,000-34,000 pinewood nematodes, Bursaphelenchus xylophilus, isolated from infected Scotch pines in Missouri. Equal numbers of trees of each species inoculated with distilled water served as controls. Nine of fifteen Scotch pines died within 4 months of nematode infection or during the winter and early spring following infection. A single eastern white and shortleaf pine died. No jack pines died. A single Scotch pine control died, apparently the result of natural nematode infection. No other controls died. Mean oleoresin flow did not differ among nematode-inoculated jack and shortleaf pines and their respective controls. Oleoresin flow in nematode-inoculated eastern white and Scotch pines was significantly lower than in their controls. Oleoresin flow was temporarily reduced in mortality-resistant eastern white and Scotch pines following nematode infection. Thus a sublethal impact of nematode infection on mortality-resistant host trees was documented.  相似文献   

8.
Metalaxyl significantly reduced population of Pratylenchus coffeae, Radopholus similis, and Tylenchulus semipenetrans in roots of Citrus limon (rough lemon) under greenhouse conditions. Postinoculation treatment of rough lemon seedlings was not as effective i n reducing nematode populations as was treatment before inoculation. Fewer nematodes infected metalaxyl-treated roots than nontreated roots. However, incubation of nematodes in metalaxyl did not inhibit nematode motility or their ability to locate and infect roots. Cellular responses to nematode injection differed between treated and nontreated tissues. Metalaxyl appeared to confer nematode contraol by modifying citrus roots such that a normally susceptible rootstock became tolerant.  相似文献   

9.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

10.
The pine wood nematode, Bursaphelenchus xylophilus, is an invasive plant parasitic nematode and a worldwide quarantine pest. An indigenous species in North America and the causal agent of pine wilt disease, B. xylophilus has devastated pine production in Southeastern Asia including Japan, China, and Korea since its initial introduction in the early 1900s. The reactive oxygen species (ROS) is the first line of defense utilized by host plants against parasites, while nematodes, counteractively, employ antioxidants to facilitate their infection. Peroxiredoxins (Prxs) are a large class of antioxidants recently found in a wide variety of organisms. In this report, a gene encoding a novel 2-cysteine peroxiredoxin protein in B. xylophilus was cloned and characterized. The 2-cysteine peroxiredoxin in B. xylophilus (herein refers to as "BxPrx") is highly conserved in comparison to 2-cysteine peroxiredoxins (Prx2s) in other nematodes, which have two conserved cysteine amino acids (Cp and Cr), a threonine-cysteine-arginine catalytic triad, and two signature motifs (GGLG and YF) sensitive to hydrogen peroxide. In silico assembly of BxPrx tertiary structure reveals the spatial configuration of these conserved domains and the simulated BxPrx 3-dimensional structure is congruent with its presumed redox functions. Although no signal peptide was identified, BxPrx was abundantly expressed and secreted under the B. xylophilus cuticle. Upon further analysis of this leader-less peptide, a single transmembrane α-helix composed of 23 consecutive hydrophobic amino acids was found in the primary structure of BxPrx. This transmembrane region and/or readily available ATP binding cassette transporters may facilitate the transport of non-classical BxPrx across the cell membrane. Recombinant BxPrx showed peroxidase activity in vitro reducing hydrogen peroxide using glutathione as the electron donor. The combined results from gene discovery, protein expression and distribution profiling (especially the "surprising" presence under the nematode cuticle), and recombinant antioxidant activity suggest that BxPrx plays a key role in combating the oxidative burst engineered by the ROS defense system in host plants during the infection process. In summary, BxPrx is a genetic factor potentially facilitating B. xylophilus infestation.  相似文献   

11.
The transmission of Bursaphelenchus xylophilus from Monochamus alternatus males to Pinus densiflora trees via oviposition wounds has been determined. Nematode-infested males, with mandibles fixed experimentally to prevent feeding, were placed for 48 hours with pine bolts containing oviposition wounds that had been made by nematode-free females. After removal of the nematode-infested males, the pine bolts were held for 1 month and then examined for the presence of nematodes. Reproducing nematode populations were recovered from pine bolts that were exposed to male beetles carrying a high number of nematodes. No reproducing nematode population could be recovered from pine bolts exposed to beetles with a small number of nematodes. Nematode reproduction in the pine bolts was not related to the number of oviposition wounds per bolt. Fourth-stage dispersal B. xylophilus juveniles, collected from beetle body surfaces, were inoculated on pine bolt bark 0, 5, 10, and 15 cm away from a single artificial, small hole. These dauer juveniles successfully entered some bolts. The probability of successful nematode reproduction decreased with increased distance between inoculation point and artificial hole. The results indicated that B. xylophilus can move a significant distance to oviposition wounds along the bark surface and enter a tree via the wounds. The new transmission pathway is considered important for the nematode to persist in pine forests such as in North America where pine wilt disease does not occur.  相似文献   

12.
Pines responded to inoculation with Bursaphelenchus xylophilus by changes in reducing and nonreducing carbohydrate concentrations dependent on the pine species and the pathotype of B. xylophilus with which the trees were inoculated. Carbohydrate concentrations, in compatible pine-nematode pathotype combinations, decreased initially after inoculation and then increased slightly before decreasing to approximately 10% of the control levels as the seedlings wilted. In compatible nematode pathotype-pine species combinations, carbohydrate concentrations decreased and then increased as the nematode population densities declined.  相似文献   

13.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

14.
To determine the effect of soil environment on the life stages and total numbers of Bursaphelenchus xylophilus, nematode-infested wood chips alone and mixed with soil were incubated at 12 and 20 C. Nematodes were extracted at 2-week intervals for 12 weeks. Numbers of nematodes and percentage of third-stage dispersal larvae were greater at 12 C and in chips without soil. Percentage of juveniles of the propagative cycle was greater at 20 C and in chips with soil. Although B. xylophilus survived in chips with soil for 12 weeks, nematode numbers and life stage percentages changed little over time. To determine if B. xylophilus was capable of infecting wounded roots, infested and uninfested chips were mixed with soil in pots with white and Scots pine seedlings. Trees were maintained at 20 and 30 C and harvested at mortality or after 12 weeks. Only seedlings treated with infested chips contained nematodes. In field experiments, planted seedlings were mulched with infested chips to determine if nematodes would invade basal stem wounds. Among these trees, Scots pine was more susceptible than white or red pines to infection and mortality.  相似文献   

15.
Gliocladium virens was isolated from slash pine trees symptomatic and asymptomatic for pine wilt disease with frequencies of 24% and 10%, respectively. Populations of Bursaphelenchus xylophilus, the nematode incitant of this disease, reproduced on this fungus and inhibited its growth. Growth inhibition of the fungus was characterized by an absence of sporulation and by the formation of chains of dark, thick-walled, chlamydospore-like cells. Population increase during a 12-day period following infestation of cultures of the fungus with 10,000 nematodes averaged 3-fold at 16 C, 9-fold at 20 C, and 24-fold at 24 C. In greenhouse studies, nematode recovery from slash pine seedlings coinoculated with both organisms was significantly greater than that obtained from seedlings inoculated with the nematode alone.  相似文献   

16.
We examined the amount of maturation feeding and transmission of pinewood nematodes, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (Nematoda: Parasitaphelenchidae), to healthy pine (Pinus spp.) trees by pine sawyer Monochamus alternatus Hope (Coleoptera: Cerambycidae) adults infected with Beauveria bassiana (Balsamo) Vuill. (Deuteromycotina: Hyphomycetes). Inoculated beetles fed less than noninoculated beetles, probably because feeding by inoculated beetles began to decrease at about 4 d postinoculation and inoculated beetles ceased to feed for several days before their death. In inoculated beetles carrying >1,000 nematodes, some beetles died before nematode departure. The remaining heavily nematode-infested beetles lived until the beginning of nematode departure, but they had stopped feeding, preventing the nematodes from entering pine twigs. We suggest that microbial control of pine sawyer adults by B. bassiana may be effective in preventing transmission of pine wilt disease to healthy pine trees.  相似文献   

17.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

18.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

19.
Transmission of pinewood nematode through Monochamus carolinensis oviposition wounds was documented. Nematode transmission was measured as the average number of nematodes isolated per oviposition wound excavated and also as the percentage of oviposition wounds from which nematodes were isolated. The influence of three factors that might affect nematode transmission was investigated: age of the beetle vector, number of nematodes carried per beetle, and egg deposition in the oviposition wound. Only the number of nematodes carried by the beetle was found to have a significant effect on transmission. Nematodes were transmitted more frequently and in slightly greater numbers by beetles carrying more nematodes. The influence of pinewood on nematode exit from beetles were investigated by comparing nematode exit from beetles placed over pine chips with those placed over distilled water. Nematodes exited in greater numbers and at a higher frequency from beetles over pine chips than from beetles over distilled water. Apparently, the nematodes are able to detect a factor from the pine chips that promotes their exit from the beetles.  相似文献   

20.
VX211 is a highly vigorous Paradox hybrid clone that outgrew other walnut seedlings in the presence of nematodes. A four-year macroplot trial involving Paradox VX211 and a standard Paradox selection, AX1, demonstrated that the damage threshold level of Pratylenchus vulnus on commercially available walnut rootstocks is < 1 nematode/250 cm(3) of soil. Using 1 as the initial population level (Pi) within an inoculation zone of 80 L of soil, the P. vulnus population level increased 2,500-fold in the first year of growth. Three years after inoculation soil population levels of P. vulnus on VX211 were significantly reduced compared to that of the moderately vigorous AX1. Growth of VX211 was 35% greater than that of AX1 regardless of the Pi. Examination of stained roots revealed that feeding and reproduction by P. vulnus on VX211 was primarily ectoparasitic. This is the first report on a new walnut rootstock that can be readily cloned, has high vigor, exhibits tolerance to low population levels of P. vulnus, reduces nematode feeding and reproduction within the root terminus, and is currently available to California growers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号