首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixation was investigated in Kaneohe Bay, Oahu, Hawaii, a subtropical eutrophic estuary, by using the acetylene reduction technique on algal samples. No active, planktonic, N2-fixing blue-green algae or bacteria were observed. However, Calothrix and Nostoc capable of fixing N2 were cultured from navigational buoys and dead coral heads. Nitrogen fixation associated with these structures was greater in the middle sector than in the south and north sectors of the estuary. Experiments demonstrated that the fixation was photosynthetically dependent. Examination of the data showed that there was no significant correlation between rates of nitrogen fixation and concentration of combined nitrogen compounds in the Bay water. Fixation was significantly correlated to the inorganic N/P (atomic) ratio in the south and middle sectors but not in the north sector. The nutrient data indicate there was a flux of combined nitrogen, but not phosphate, from the reef flats.  相似文献   

2.
Nitrogen fixation was measured in situ by the 15N tracer technique in the Bay of Quinte, Lake Ontario, and three lake enclosures with different nutrient enrichment. The fixation rates in the Bay were low but detectable during the summer season. The fixation activities were found to be correlated with the presence of nitrogen-fixing blue-green algae and the distribution of the algal species in the water was affected by nitrate enrichment. The study showed that, with the addition of nitrate, species not able to fix atmospheric nitrogen became predominant. However, in the absence of external nitrogen (i.e., nitrate), species able to fix nitrogen became dominant. Phosphorus enrichment alone did result in higher N-fixation rates in the water and, without the addition of phosphorus, the fixation rates are lower and fluctuate throughout the season, presumably dependent on the availability of phosphorus in the water.A comparison between the 15N-isotopic method and the acetylene reduction method is reported and the factors involved in the variations between these two methods are discussed.  相似文献   

3.
唐得昊  邹欣庆  刘兴健 《生态学报》2013,33(4):1240-1250
生态系统健康评价是生态系统保护和监测研究的重要内容,该过程迫切需要综合性强、准确性高的指标,能质和生物多样性指标都是生态系统健康评估中的有效指标.以江苏省海岸带游泳和底栖生物群落为对象,沿海岸线从海州湾到长江入海口北岸选取15个站点,调查研究江苏省海岸带生态系统能质和生物多样性及其空间分布格局.结果表明:江苏海岸带除了中部地区能质和结构能质值较一致(都偏小)外,南北差异明显,生物多样性指数空间分布情况为南部Margalef指数略大于北部,中部较小,Shannon Wiener和Simpson指数空间分布都为南部>中部>北部;能质与生物多样性指标在高级生态系统中反映的生态系统健康状态一致,在中低级生态系统中差异明显;能质与生物多样性指标关联程度低,前者的测算侧重于生态系统中物种的等级,后者的测算侧重于物种的数量;总结能质和生物多样性指标在理论支撑、建立理论视角、与生态系统健康对应关系、应用模型以及局限性等方面的差异,研究结果在一定程度上可以丰富和完善生态系统健康评价研究理论与方法体系.  相似文献   

4.
Turner  R. Eugene  Lee  James M.  Milan  Charles S.  Swenson  Erick M. 《Hydrobiologia》2021,848(20):4787-4800

We measured water quality monthly for 22 years in water entering, within, and exiting a 65 km2 shallow polymictic and eutrophic freshwater lake in the northern Gulf of Mexico. Fertilizer use in the watershed is the dominate source of phosphorous (P) going into the lake and controls the lake’s P concentrations, but nitrogen (N) fertilizer use was not related to total nitrogen concentration in the lake. Half of the particulate P entering the lake is trapped within it and there is a net accumulation of N that appears to be from the stimulation of nitrogen fixation. The lake’s concentration of Chlorophyll a (µg Chl a l?1) and increase in N in the lake was directly related to the concentration of P in water entering the lake. Variations in the Chl a concentration within a freshwater lake downstream are also directly related to the annual use of P fertilizer, but not to N fertilizer use. Reducing agriculture-sourced P runoff will lower (but not eliminate) both the frequency of algal blooms within Lac des Allemands and the amount of N delivered to the estuary.

  相似文献   

5.
Nitrogen fixation, as assayed by the acetylene reduction technique, provided 44% of the input of nitrogen to a lake in central Florida (Lake Tohopekaliga) during 1984. Ninety-four percent of the lake total fixation was found in the water column and associated with Anabaena spp. The lake-wide average nitrogen fixation rate of 5.7 g N/m2-yr amounted to a mass loading of 497 metric tons of nitrogen for the year, and is one of the highest nitrogen fixation rates reported.  相似文献   

6.
A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N(2) gas species ((28)N(2), (29)N(2), and (30)N(2)) were monitored during incubation experiments after the addition of (15)NO(3)(-). Formulas were developed to estimate the production (denitrification) and consumption (N(2) fixation) of N(2) gas from the fluxes of the different isotopic forms of N(2). Proportions of the three isotopic forms produced from (15)NO(3)(-) and (14)NO(3)(-) agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 microg-atoms of N m(-2) h(-1). They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N(2) production rates due to denitrification could be separated from high N(2) consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 microg-atoms of N m(-2) h(-1)) were lower than nitrogen fixation rates (average, 60 microg-atoms of N m(-2) h(-1)). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N(2) isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.  相似文献   

7.
Summary The nitrogen fixing activity of three Ivory Coast soils was tested in the laboratory by the acetylene reduction assay and the Kjeldahl method. Nitrogen fixation due to algae was estimated to be of the order of 4 to 8 (acetylene method) and 7 μg N per g soil per day (Kjeldahl method). Nitrogen fixation due to bacterial activity in the rice rhizosphere was estimated to be of the order of 2 to 5 (acetylene method) and 1 to 3 μg N per g soil per day (Kjeldahl method). These results emphasize the importance of the bacterial nitrogen fixation in the rhizosphere which had been hitherto overlooked. Comparison of acetylene method and Kjeldahl method results shows discrepancies the origin of which has been discussed. Time course of acetylene reduction by rhizosphere soils exhibits a lag phase which may be attributed to Postgate's switch off — switch on process.  相似文献   

8.
Nitrogen uptake, distribution and remobilization in the vegetative and reproductive parts of the plant were studied in bean (Phaseolus vulgaris L.) cultivars Negro Argel and Rio Tibagi inoculated with either Rhizobium strain C05 or 127 K-17. Greenhouse grown plants were supplied with 2.5 mg N (plant)−1 day−1 as KNO3 or K15NO3 and the relative contribution to total plant nitrogen of mineral and symbiotically fixed nitrogen was determined. Control plants included those entirely dependent on fixed nitrogen as well as uninoculated plants supplied with 10 mg N (plant)−1 day−1. No differences were observed between inoculated treatments in total nitrate reductase activity and in the amount of mineral nitrogen absorbed, but there were considerable differences in the contribution of fixed nitrogen. Nitrogen fixation supplied from 58 to 72% of the total nitrogen assimilated during the bean growth cycle and the symbiotic combinations fixed most of their nitrogen (66 to 78% of total nitrogen) after flowering. Maximum uptake of mineral nitrogen was in the 15-day-period between flowering and mid-podfill (47 to 58% of total mineral nitrogen). Nitrogen partitioning varied with Rhizobium strains, and inoculation with strain C05 increased the nitrogen harvest index of both cultivars. Applied mineral nitrogen had a variable effect and in cv. Negro Argel was more beneficial to vegetative growth, resulting in smaller nitrogen harvest indices. Seed yield was not increased by heavy nitrogen fertilization. In contrast, cv. Rio Tibagi always benefited from nitrogen applications. Among the various nitrogen sources supplying the grain, the most important one was the fixed nitrogen translocated directly from nodules or after a rapid transfer through leaves, representing from 60 to 64% of the total nitrogen incorporated into the seeds.  相似文献   

9.
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant (Sphagnum fuscum) and more degradable (Sphagnum balticum) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two (Sphagnum) and three (E. vaginatum) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum. Enhanced N deposition increases Sphagnum litter N loss. As long‐term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature.  相似文献   

10.
This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions.  相似文献   

11.
Moawad  H.  Badr El-Din  S.M.S.  Abdel-Aziz  R.A. 《Plant and Soil》1998,204(1):95-106
The diversity of rhizobia nodulating common bean ( Phaseolus vulgaris), berseem clover (Trifolium alexanderinum) and lentil (Lens culinaris) was assessed using several characterization techniques, including nitrogen fixation efficiency, intrinsic antibiotic-resistance patterns (IAR), plasmid profiles, serological markers and rep-PCR fingerprinting. Wide diversity among indigenous rhizobial populations of the isolates from lentil, bean and clover was found. Strikingly, a large percentage of the indigenous rhizobial population was extremely poor at fixing nitrogen. This emphasizes the need to increase the balance of highly efficient strains within the rhizobial population. Use of high-quality inocula strains that survive and compete with other less-desired and less-efficient N2-fixing rhizobia represents the best approach to increase biological nitrogen fixation of the target legume. In field-grown lentils, the inoculant strains were not able to outcompete the indigenous rhizobia and the native lentil rhizobia occupied 76–88% of the total nodules formed on inoculated plants. Nitrogen fixation by lentils, estimated using the 15N isotope dilution technique, ranged between 127 to 139 kg ha-1 in both inoculated and un-inoculated plants. With berseem clover, the inoculant strains were highly competitive against indigenous rhizobia and occupied 52–79% of all nodules. Inoculation with selected inocula improved N2 fixation by clover from 162 to 205 kg ha-1 in the three cuts as compared with 118 kg ha-1 in the un-inoculated treatment. The results also indicated the potential for improvement of N2 fixation by beans through the application of efficient N2-fixing rhizobia.  相似文献   

12.
A. L. Huber 《Hydrobiologia》1986,131(3):193-203
Variations in nitrogen fixation (acetylene reduction) by Nodularia spumigena blooms in the Peel-Harvey estuarine system were examined with respect to spatial (sampling station location, and depth) and temporal (seasonal and diurnal) distribution. The annual contributions of nitrogen fixation by the blooms to the nitrogen budget of the estuary were estimated to range from 309 to 713t. Contributions by nitrogen fixation were similar to the riverine inputs in the Harvey Estuary, but lower in the Peel Inlet.The Harvey Estuary had higher biomass and total fixation rates (to 0.4 nmol C2H2 · ml–1 h–1), but the heterocyst nitrogen fixation rates were greater in the Peel Inlet (to 9 × 10–1 nmol C2H2 · heterocyst–1 · h–1). Nitrogen fixation decreased with depth in response to light, though other factors also appeared to be involved. The rates of fixation decreased concurrently with increasing bloom age, total soluble inorganic nitrogen and salinities. Maximum daily fixation rates occurred in the early morning.  相似文献   

13.
The alteration of the nitrogen (N) cycle by human activities is widespread and has often resulted in increased flows of nitrogen to the marine environment. In this paper we have attempted to know the changes of N fluxes in Cuba by quantifying the N inputs to the landscape from (1) fertilizer applications, (2) atmospheric deposition, (3) biological nitrogen fixation and (4) net import of food and feeds. N-inputs to the country progressively increased until the end of the 20th century, reaching a peak during the 80s when low cost fertilizer imported from the former Soviet Union led to heavy rates of application. This rapid growth represented more than a 5-fold increase with respect to pristine values; higher than the two-fold global increase of anthropogenic N reported by Vitousek et al. (1997 Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750). Inorganic fertilizer was the largest single source of reactive N, followed by atmospheric deposition, biological fixation, and net imports of foods and feedstocks. Nitrogen inputs peaked in 1987 and data expressed on an area basis show that N flux to the Cuban landscape, in the 80s, was one of the highest reported in the literature. During the 90s, there was a dramatic drop in nitrogen inputs mainly associated to a decrease in the use of inorganic fertilizer. Other factors reducing nutrient inflows to Cuba, during the same period, were imports of foodstuff and livestock feeds, a decrease of nitrogen oxide emissions, and a decrease in the sugar cane crop area. Using an empirical relationship (Howarth et al. 1996 Regional nitrogen budgets and riverine N & O fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139) we present a very preliminary estimate of N-inputs to coastal waters and discuss the consequences of these changes on the coastal zone.  相似文献   

14.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

15.
Trichodesmium spp. have proved to be enigmatic organisms, and their ecology and physiology are unusual among diazotrophs. Recent research shows that they can simultaneously fix N2 and take up combined nitrogen. The co-occurrence of these two processes is thought to be incompatible, but they could be obligatory in Trichodesmium spp. if only a small fraction of cells within a colony or along a filament are capable of N2 fixation. Combined nitrogen is released from cells during periods of active growth and N2 fixation, and concomitantly taken up by Trichodesmium spp. or cells living in association with colonies. Although the nitrogenase of Trichodesmium spp. is affected by high concentrations of combined nitrogen, it might be relatively less sensitive to low concentrations of combined nitrogen typical of the oligotrophic ocean and culture conditions. Nitrogenase activity and synthesis exhibits an endogenous rhythm in Trichodesmium spp. cultures, which is affected by the addition of nitrogen.  相似文献   

16.
Nitrogen, an abundant and yet limiting nutrient for crop and food production, enters the plant as nitrate or ammonium, or as dinitrogen through biological fixation by procaryotes associated with the plant. Nitrogen incorporation into the soil-plant-animal system is ultimately restricted by rates of biological and industrial fixation. Biological fixation conserves fossil fuel, but fertilization is preferred in most present agriculture. Nitrogen-metabolism research has the practical objectives of allowing more efficient N-fertilizer utilization by plants, including those that fix N2 but benefit from fertilizer_N supplements. Nitrogen accumulation by harvested crops results in changes in soil acidity, with the direction of change depending on the N-source. There is little information on long-term effects of crop N-nutrition on acidity, and acidity is a critical factor that affects agricultural productivity in many tropical soils. Thus, plant control of pH and the acid/base balance in the soil as a consequence of nitrogen uptake and assimilation are important areas of future research.  相似文献   

17.
To investigate how plant diversity loss affects nitrogen accumulation in above‐ground plant biomass and how consistent patterns are across sites of different climatic and soil conditions, we varied the number of plant species and functional groups (grasses, herbs and legumes) in experimental grassland communities across seven European experimental sites (Switzerland, Germany, Ireland, United Kingdom (Silwood Park), Portugal, Sweden and Greece). Nitrogen pools were significantly affected by both plant diversity and community composition. Two years after sowing, nitrogen pools in Germany and Switzerland strongly increased in the presence of legumes. Legume effects on nitrogen pools were less pronounced at the Swedish, Irish and Portuguese site. In Greece and UK there were no legume effects. Nitrogen concentration in total above‐ground biomass was quite invariable at 1.66±0.03% across all sites and diversity treatments. Thus, the presence of legumes had a positive effect on nitrogen pools by significantly increasing above‐ground biomass, i.e. by increases in vegetation quantity rather than quality. At the German site with the strongest legume effect on nitrogen pools and biomass, nitrogen that was fixed symbiotically by legumes was transferred to the other plant functional groups (grasses and herbs) but varied depending on the particular legume species fixing N and the non‐legume species taking it up. Nitrogen‐fixation by legumes therefore appeared to be one of the major functional traits of species that influenced nitrogen accumulation and biomass production, although effects varied among sites and legume species. This study demonstrates that the consequences of species loss on the nitrogen budget of plant communities may be more severe if legume species are lost. However, our data indicate that legume species differ in their N2 fixation. Therefore, loss of an efficient N2‐fixer (Trifolium in our study) may have a greater influence on the ecosystem function than loss of a less efficient species (Lotus in our study). Furthermore, there is indication that P availability in the soil facilitates the legume effect on biomass production and biomass nitrogen accumulation.  相似文献   

18.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
D. D. Baker  D. Du  M. Fried 《Protoplasma》1994,183(1-4):24-28
Summary Experiments were conducted to determine the effect on biological dinitrogen fixation byCasuarina of available nitrogen (N) in the substrate and competition by interplantedEucalyptus. In these experiments, combined N was applied to the plants after nodules were developed and functioning. Both environmental factors, nitrate and competition, were observed to influence biological dinitrogen fixation byCasuarina, but not yield (total dry weight). In one experiment, the proportion of nitrogen derived byCasuarina from atmospheric fixation (pNdfa) was observed to be inhibited by potassium nitrate in a linear fashion. However, substrate N did not significantly affect the weight of root nodules. Thus nodule dry weight was not highly correlated with the proportion of nitrogen fixed. In a second experiment, the presence of a non-fixing interplanted species,Eucalyptus, increased dinitrogen fixation inCasuarina.Casuarina interplanted withEucalyptus obtained a greater proportion of its nitrogen (94.75%) from fixation than didCasuarina grown alone (86.68%) suggesting that competition for substrate N influences the proportion of nitrogen fixed by this actinorhizal plant.Dedicated to the memory of Professor John G. Torrey  相似文献   

20.
L. Högbom  P. Högberg 《Oecologia》1991,87(4):488-494
Summary Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号