首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Various naturally occurring steroids, synthetic steroid derivatives and non-steroidal hormone agonists and antagonists were assayed as inhibitors of human placental 17β-HSD activities. Microsomal 17β-HSD was inhibited by C18 -,C19- and C21-steroids. Soluble 17β-HSD was highly specific for C18-steroids. In contrast to the soluble activity, the microsomal enzyme also had a strong affinity for ethinylestradiol (KI=0.3 μM) and danazol (KI=0.6 μM); anabolic steroids and norethisterone were weaker inhibitors. Of the non-steroids tested only diethylstilbestrol and o-demethyl CI-680 were inhibitors and they showed a greater affinity for soluble 17β-HSD.KI-values for estradiol-17β, (0.8 μM), progesterone (27.0 μM) and 20α-dihydroprogesterone (1.5 μM) were comparable to reported tissue levels of these compounds, consistent with a possible competition in vivo among naturally occurring C18-, C19-, and C21-steroids for the active site of microsomal 17β-HSD.  相似文献   

2.
A highly purified preparation of cytochrome P-450, designated as P-45011β, has been obtained from bovine adrenal cortex mitochondria. The P-45011β exhibits remarkably high steroid hydroxylase activity in the reconstituted adrenal electron-donating system from NADPH via NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1) and adrenal ferredoxin. The turnover numbers (moles of hydroxylated product formed per minute per mole of P-450-heme) are 110 and 18 for respective 11β- and 18-hydroxylase activity when deoxycorticosterone is the substrate. The apparent Km value is 6 μm for both reactions. The ratio, about 6:1 between the two activities, is constant under various experimental conditions including those in the presence of competitive inhibitors of hydroxylation. In addition to deoxycorticosterone, other steroids such as 11-deoxycortisol, 4-androstene-3,17-dione and testosterone are the hydroxylatable substrates. In cases in which 4-androstene-3,17-dione, a C19-steroid, is the substrate, the hydroxylatable sites appear to be its respective 11β- and 19-position. The ratio between the two activities is about 4:1. In view of these results, it is concluded that one hemoprotein species, the P-45011β, is responsible for the hydroxylase reactions of various Corticosteroids. 2-Methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) inhibits the P-45011β-catalyzed steroid hydroxylase reactions of either deoxycorticosterone at 11β- and 18-position or 4-androstene-3,17-dione at 11β- and 19-position (Ki = 0.1-0.2 μM). The P-450scc-catalyzed cholesterol desmolase reaction is also inhibited, although weakly (Ki = 160 μM). In addition, both adrenal cytochromes appeared to differ from each other in spectral response to metyrapone.  相似文献   

3.
Zhang Y  Tobias HJ  Brenna JT 《Steroids》2009,74(3):369-271
Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5α-androstan-3β-ol acetate (5α-A-AC), 5α-androstan-3α-ol-17-one acetate (androsterone acetate, A-AC), 5β-androstan-3α-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5α-cholestane (Cne). CU/USADA 34-1 contains 5β-androstan-3α-ol-17-one (etiocholanolone, E), 5α-androstan-3α-ol-17-one (androsterone, A), and 5β-pregnane-3α, 20α-diol (5βP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute δ13CVPDB and Δδ13CVPDB values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(δ13C) < 0.2‰. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.  相似文献   

4.
Pregnenolone (3β-hydroxy-5-pregnen-20-one) and DHA (3β-hydroxy-5-androsten-17-one), substrates for 3β-hy-droxysteroid dehydrogenase (3β-HSD), with KM values of 15–40 nM, were ineffective inhibitors of 5-ene-3-ketosteroid isomerase (isomerase), with KI values >40 μM in each case. Progesterone and androstenedione (4-androstene-3, 17-dione), 3β-HSD inhibitors with KI values of 5.0 μM and 0.8 μM respectively, were also relatively ineffective inhibitors of isomerase, with KI values of 30 μM and 16.5 μM respectively. Exposure of microsomes to hydrogen peroxide, which significantly increases the KM for pregnenolone as a 3β-HSD substrate, had no effect on the KM for the isomerase substrate 5-pregnene-3, 20-dione.It is concluded that the data do not support the common site concept with regard to the conversion of pregnenolone to progesterone by human placental microsomes.  相似文献   

5.
Experimental evidence is herein presented to show that C22 acids are key intermediates in the microbial degradation of cholesterol and campesterol (β-sitosterol) side chains. Exposure of 19-hydroxy-sterols to Rhodococcus mutant K-3 gave four new steroid carboxylic acids in addition to that known as estrone (P1); the chemical structures of these metabolites were characterized as 2(3-hydroxy-1,3,5(10)-estratrien-17-yl)-propionic acid (P2), 2-methyl-6(3-hydroxy-1,3,5(10)-estratrien-17-yl)-heptanoic acid (P3), 2,3-dimethyl-6(3-hydroxy-1,3,5(10)-estratrien-17-yl)-heptanoic acid (P4), and 2(3-hydroxy-1,3,5(10), 17-estratetraen-17-yl)-propionic acid (P5). We propose a degradation pathway of 19-hydroxy-cholesterol and campesterol (β-sitosterol) side chains.  相似文献   

6.
The α and β isomers of spiro-3-oxiranyl-5α-androstan-17β-ol were tested as possible inhibitors of Δ5-3-ketosteroid isomerase of Pseudomonastestosteroni. The β-oxirane causes a first-order irreversible inactivation of the enzyme and shows saturation kinetics (KI, 17 μM). Protection against inactivation is exhibited by 19-nortestosterone, a competitive inhibitor of the isomerase. Although the α-oxirane was found to be a good reversible inhibitor (Ki, 21 μM), prolonged incubation with it failed to produce any inactivation of the isomerase. The results obtained are consistent with the presence of a nucleophilic group situated near the 3-keto group of the substrate in the enzyme-steroid complex.  相似文献   

7.
Alcohol dehydrogenase SS was prepared from horse liver by salt fractionation, ion-exchange chromatography, and affinity chromatography. The purified isoenzyme is free from extraneous protein and other alcohol dehydrogenase isoenzyme contaminants and contains four Zinc atoms per molecule. The substrate specificity with saturated aliphatic alcohols and aldehydes of two to six carbon chain lengths has been investigated. The Km values and turnover numbers at maximal velocity (kcat) are presented. Values of kcat are constant within a substrate category and independent of the substrate chain length, while the Km values decrease with the increase of the substrate chain length. The Km values for two- and three-carbon substrates are large, that for ethanol (40 mm) is two orders of magnitude larger than that reported for classical preparations of horse liver alcohol dehydrogenase. At pH 7, the kcat values for alcohol oxidation are almost 30 times smaller than for aldehyde reduction. The enzyme has been characterized with regard to specific activity with several nonsteroidal substrates and with two steroids: 3-oxo-5β-androstan-17β-ol and 5β-pregnan-21-ol-3,20-dione hemisuccinate. NAD(H) is the preferred coenzyme. Values of Km for NADH with constant steroidal substrates are an order of magnitude smaller than the corresponding Km values with nonsteroidal substrates. A possible explanation for this observation is presented.  相似文献   

8.
Hiroko Yokokawa 《Phytochemistry》1980,19(12):2615-2618
The simple lipids present in ten species of Polyporaceae (Piptororus betulinus, Coriolus pargamenus, C. versicolor, C. heteromorphus, Formitopsis cytisina, F. pinicola, Microporus flabelliformis, Gloephyllum saepiarium, Crytoderma citrinum and Grifola frondosa) were investigated. The fatty acids that these species had in common were C16-saturated acids (except in P. betulinus) and C18-unsaturated acids. Ergosterol and ergosta-7,22-dien-3β-ol were isolated from these mushrooms. Lupeol was obtained from G. saepiarium. Ergost-7-en-3β-ol, lanosterol and 24-methylene-24,25-dihydrolanosterol were tentatively identified.  相似文献   

9.
The fatty acid, sterol and chlorophyll pigment compositions of the marine dinoflagellates Gymnodinium wilczeki and Prorocentrum cordatum are reported. The fatty acids of both algae show a typical dinoflagellate distribution pattern with a predominance of C18, C20 and C22 unsaturated components. The acid 18:5ω3 is present at high concentration in these two dinoflagellates. G. wilczeki contains a high proportion (93.4%) of 4-methyl-5α-stanols including 4,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol), dinostanol and 4,23,24-trimethyl-5α-cholest-7-en-3β-ol reported for the first time in dinoflagellates. The role of this sterol in the biosynthesis of 5α-stanols in dinoflagellates is discussed. P. cordatum contains high concentrations of a number of δ 24(28)-sterols with dinosterol, 24-methylcholesta-5,24(28)-dien-3β-ol, 23,24-dimethylcholesta-5,22E-dien-3β-ol, 4,24-dimethyl-5α-cholest-24(28)-en-3β-ol and a sterol identified as either 4,23,24-trimethyl- or 4-methyl-24-ethyl-5α-cholest-24(28)-en-3β-ol present as the five major components. The role of marine dinoflagellates in the input of both 4-methyl- and 4-desmethyl-5α-stanols to marine sediments is discussed.  相似文献   

10.
Isolation of two C(17)-C(20) rotamers of 20-methyl-20-(2-hydroxy-ethoxy)-5-pregnene-3β, 17α-diol has been reported. X-Ray analysis of a diacetate derivative of one of the “rotamers” shows that the actual structure is 3β-acetoxy-17aα-(2-acetoxyethoxy)-17α,17aβ-dimethyl-D-homo-5-androsten-17β-ol (C28H44O6). Thus, although this investigation refutes the existence of C(17)-C(20) rotamers, it suggests a possible new pathway for D-homo steroid synthesis.  相似文献   

11.
Steroids are generally sparingly soluble in water. Thus, for in vitro studies of steroid metabolism or enzymology it is common practice to solubilize steroids by the addition of a small amount (2–10%, v/v) of an organic cosolvent. Methanol, ethanol, and 1,2-propanediol, singly or in combination, have been widely used (1). Effects of organic solvents on the kinetic parameters, Km and Vmax, of steroid-metabolizing enzymes with various substrates have been demonstrated (2,3), and the results are consistent with the conclusion that organic solvent influences on catalytic activity reflect, in part, effects on the aggregation state and solubility of steroid substrates.Light-scattering measurements have been applied extensively in studies of macromolecular structure (4) and micelle formation by a large variety of amphiphilic substances [reviewed in Ref. (5)]. Jones and Gordon (6) used a commercial instrument, designed specifically for light-scattering measurements, to characterize micelle formation in aqueous solutions by Δ5-3-ketosteroids containing various substituents at the 17β position. They showed that turbidity versus concentration plots were of the form seen in studies of micelle formation (5) and that steroids can exist in solution in monomeric or micellar forms, their aggregation state being a function of the polarity of the steroid solute and the composition of the solvent.To estimate solubility quantitatively 3H- or 14C-labeled steroids have been used in conjunction with centrifugation (3), dialysis (7), or filtration (8). These techniques allow for accurate estimates of solubility, but one may encounter problems due to nonspecific absorption on membranes or the unavailability of the labeled steroid of interest.We have observed that steroid aggregation and solubility can be estimated easily and with high sensitivity with a commercially available fluorometer. In this report the method is described and examples demonstrating the reproducibility and sensitivity of the technique are presented.  相似文献   

12.
1. A method in use for the extraction of urinary steroid conjugates has been applied to study the recovery of synthetic steroid monoglucuronides from aqueous solution. 2. In the presence of dissolved ammonium sulphate (50g./100ml.), ether–ethanol (3:1, v/v, 3×0·5vol.) extracted the monoglucuronides of steroids of the C18, C19 and C21 series, quantitatively at values pH2–9. 3. The hydrolysis of the synthetic steroid monoglucuronides by β-glucuronidase (Patella vulgata) has been examined with reference to the pH value of the medium, enzyme concentration and substrate concentration. 4. The rate of hydrolysis of steroid monoglucuronides was dependent upon steroid structure and upon site of conjugation. 5. The rate of hydrolysis of the monoglucuronides decreased in the order C-3 (phenolic) >C-3β>C-17β>C-3α.  相似文献   

13.
Sterols extracted from Xanthoria parietina with organic solvents and released by saponification of the residual lichen tissue were analysed by GC-MS. The main components of the solvent-extractable sterols were two C28 trienes and those of the more tightly bound sterols were ergost-5-en-3β-ol and two C29 compounds. The structures of the C28 compounds were shown to be ergosta-5,7,22-trien-3β-ol, Ia (ergosterol) and the previously unreported ergosta-5,8,22-trien-3β-ol, IIa, for which the name lichesterol is proposed. The main C29 sterol was identified as (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol).  相似文献   

14.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

15.
The (1→4)-β-d-glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β-d-glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 mm, respectively. d-Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β-d-glucopyranoside (Ki 2.1 μm), cellobiose (Ki 1.95 μm), and cellotriose (Ki 7.9 μm) [cf.d-glucose (Ki 1756 μm)]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β-d-glucopyranoside appeared to be competitively inhibited by d-glucono-1,5-lactone. However, inhibition of hydrolysis by d-glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β-d-glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β-d-glucanase found in the same cellulase, namely, the (1→4)-β-d-glucan cellobiohydrolase.  相似文献   

16.
Taylor SD  Harris J 《Steroids》2011,76(10-11):1098-1102
17β-Amino steroids such as 17β-amino-1,3,5(10)-estratrien-3-ol (1), 17β-amino-5α-androstan-3β-ol (2) and, 17β-amino-3β-hydroxyandrost-5-ene (3) have been widely used as a key intermediates in the synthesis of a variety of biologically active steroid derivatives though concise, high yielding syntheses of these compounds has yet to be reported. 17β-Amino-1,3,5(10)-estratrien-3-ol (1) and 17β-amino-5α-androstan-3β-ol (2) were prepared in high yield by reductive amination of estrone and epiandrosterone using benzylamine and sodium triacetoxyborohydride followed by catalytic hydrogenolysis of the resulting 17β-benzylamino derivatives. Attempts to prepare 17β-amino-3β-hydroxyandrost-5-ene (3) from dehydroepiandosterone using a similar approach resulted in partial reduction of the double bond. 17β-Amino-3β-hydroxyandrost-5-ene (3) was ultimately obtained in high yield by reductive amination of dehydroepiandosterone using allylamine and sodium triacetoxyborohydride followed by removal of the allyl group from the resulting 17β-allylamino derivative with dimethylbarbituric acid and Pd(PPh(3))(4) as catalyst.  相似文献   

17.
Aromatase is the key enzyme responsible for catalyzing the conversion of C19 steroids to estrogens. Its inhibitors are widely used in breast cancer therapy. The CH2Cl2 partition of a crude ethanolic extract from the roots of Flemingia philippinensis showed potent inhibitory activity of aromatase. The constituents of the extract were analyzed and identified by liquid chromatography tandem mass spectrometry. Five purified prenylated isoflavones were evaluated for aromatase inhibition and their IC50 values ranged between 2.98 and 58.08 μm . In kinetic studies, all tested compounds behaved as reversible competitive inhibitors and their Ki values were calculated by Dixon plots. The most potent inhibitor (6,8‐diprenylorobol) had a Ki value of 1.42 μm . Furthermore, using UPLC and LC/MS, 6,8‐diprenylorobol was proven to be present in the native roots in high quantities.  相似文献   

18.
Fractions of unconjugated steroids, and steroid mono- and disulfates were isolated from cord plasma, and the concentrations of estriol, estriol sulfate, progesterone, 13 neutral steroid monosulfates (MoS) and 10 neutral steroid disulfates (DiS) were determined by gas-liquid chromatography. The mean concentrations in 30 cord plasma samples at term after normal pregnancy and delivery were as follows (μg/100 ml of free steroid ±standard deviation): estriol 16±5; estriol monosulfate 135±43; progesterone 59±19; dehydroepiandrosterone MoS 76±23; 5-androstene-3β,17α-diol DiS 279±77; 5-androstene-3β,17β-diol DiS 211±109; 16α-hydroxydehydroepiandrosterone MoS 305±97; 16β-hydroxy-dehydroepiandrosterone DiS 8±25; 33,17β-dihydroxy-5-androsten-16-one MoS 37±16, DiS 29±15 5-androstene-3β,16α,17β-triol MoS 25±9; 5-androstene-3β,16β,17α-triol DiS 31±14; pregnenolone MoS 4±33; 5-pregnene-3β,20α-diol MoS 41±14, DiS 68±43; 16α-hydroxypregnenolone MoS 101±42; 17-hydroxypregnenolone MoS 56±30; 21-hydroxypregnenolone DiS 26±15; 5-pregnene-3β,20α,21-triol MoS 37±18; 5α-pregnane-3α,20α-diol MoS 21±10, DiS 54±21; 5α-pregnane-3β,20α-diol MoS 18±9, DiS 7±39; 5β-pregnane-3α,20α-diol MoS 17±7; 5α-pregnane-3α,20α,21-triol MoS 110±56, DiS 22±19.The total amount of steroid monosulfates in the cord plasma pool was 1 mg/100 ml and that of steroid disulfates 0.5 mg/100 ml. 3β-Hydroxy-Δ5-steroids predominated. Considerable amounts of saturated c21 steroids were also detected. No statistically significant differences were found in the concentrations of any of the steroids studied, when a group of male and female fetuses were compared.  相似文献   

19.
Placental homogenates from guinea-pigs at 16, 20, 35 and 55 days gestation were incubated with 7α-3H-dehydroepiandrosterone and 4-14C-androstenedione and analyzed for conversion products by reverse isotope dilution methods. 14C-3α-Hydroxy-5α-androstan-17-one, 14C-androstane-3α, 17β-diol and 3Handrost-5-ene-3β, 17β-diol were isolated from homogenates incubated with substrates for 2 hours. 3H, 14C-Testosterone was isolated from preparations incubated for 15 minutes or with high substrate: tissue ratios. Androst-4-ene-3, 17-dione, 5α-androstane-3, 17-dione, 5β-androstanedione derivative and C18 steroid formation could not be demonstrated. These results demonstrate the capacity of guinea-pig placentas to convert dehydroepiandrosterone and androstenedione to testosterone and to derivatives reduced in ring A (5α) and at carbon 17. The activity of the Δ5-3β-hydroxysteroid dehydrogenase enzyme system appears to have been rate limiting.Homogenates of adrenals from 44–55 day old fetuses converted 4-14C-pregnenolone to androst-4-ene-3, 17-dione and 6β- and 11β-hydroxyandrostenedione. A guineapig fetal-placental unit is postulated, with steroid metabolic characteristics different from the human unit. Both permit reduction of fetal adrenal cortisol production and placental removal of C19 steroids.  相似文献   

20.
The microbiological transformation by Gibberelia fujikuroi of ent-beyer-15-ene into the beyergibberellins A9 and A13, 7β-hydroxy- and 7β,18-dihydroxybeyerenolides, and of ent-beyer-15-en-19-ol into beyergibberellins A4, A7, A9, A13 and A25,and 7β-hydroxy-and 7β,18-dihydroxybeyerenolides is described. In contrast, ent-beyer-15-en-18-ol gave ent-7α, 18,19-trihydroxybeyer-15-ene, 7β,18-dihydroxybeyerenolide and ent-7α,18-dihydroxybeyer-15-en-19-oic acid again revealing the inhibitory effect of an 18-hydroxyl group on oxidative transformations at C-6β by Gibberella fujikuroi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号