首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
长豇豆的胚珠具内外两层珠被,内珠被在种子发育早期退化消失,种皮仅由外珠被发育而成。外珠被的外表皮细胞径向伸长,外壁和经向壁增厚,形成约占成熟种皮厚度一半的栅栏层;亚表皮细胞发育为骨状石细胞层。第三层细胞类似于亚表皮层但细胞壁增厚不明显,其内方的多层薄壁细胞形成海绵组织。种脐具两层栅栏细胞,外栅栏层及其以外部分由珠柄组织发育而成管胞群。本文还对脐缝和管胞群的作用以及豆科种子的吸水机制进行了讨论。  相似文献   

2.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

3.
Summary Precipitation of ferrous ions by ferricyanide in transpiring leaves ofThemeda triandra Forsk. produced crystalline deposits, which were visible with the light and electron microscope. Prussian blue crystals were formed within the lumina of the tracheary elements and the apoplast, or cell wall continuum of the vascular tissues and bundle-sheath cells. Little if any deposition was noted within the lignified secondary thickenings of the tracheary elements. The localization pattern suggests that the ferrous ions moved from the lumina of the tracheary elements via the exposed primary walls. Prussian blue crystals were abundant in the outer tangential and radial walls of the bundle-sheath cells. By contrast, crystals were lacking in the walls of neighbouring mesophyll cells, suggesting that the suberin lamella in the bundle-sheath walls effectively inhibited the apoplastic movement of ferrous ions and possibly may impede, or restrict the movement of water across the bundle-sheath/mesophyll interface.  相似文献   

4.
Persson, C. 1995. Exotesta morphology of the Gardenieae-Gardeniinae (Rubiaceae). -Nord. J. Bot. 15: 285–300. CGpenhagen. ISSN 0107–055X.
Exotesta morphology of 68 species in 59 genera of the Gardeniinae were examined with the aid of scanning and light microscopy. The shape of the exotesta cells in surface is either isodiametrical or elongate and both shapes occur among New World and Old World genera. All genera, except for Monosalpinx, Posoqueria and Macrosphyra , are provided with secondary thickenings in the cell walls of the exotesta. The majority of the genera has a thickened radial wall. In the Asian genera Catunaregam, Deccania, Tamilnadia and the mainly Pacific genera, Atractocarpus and Trukia thickenings of the radial wall are very low or absent. In nearly half the genera the inner tangential wall is provided with thickenings, usually in the shape of a continuous plate. However, in four African genera, Atractogyne, Didymosalpinx, Mitriostigma and Sherbournia , the wall is provided with elongate anastomosing ribs. Atractocarpus differs markedly from the rest of the Gardeniinae by its ring-like thickenings in the inner tangential wall. Thickenings, in the shape of a continuous plate, in the outer tangential wall is restricted to three neotropical genera, Alibertia, Amaioua and Borojoa . Presence of distinct knobs is common in palaeotropical genera, whereas in neotropical genera this feature is only present in Casasia and Kotchubaea . It is concluded that data on exotesta morphology alone does not support any of the previously proposed informal groups, but may still be an important character to deduce phylogenetic relationships, primarily on a level just above the genus.  相似文献   

5.
The aim of this study was to describe the anatomy and ontogeny of Pterodon emarginatus seed using the usual techniques. The ovules are campilotropous, crassinucelate, and bitegmic. The following processes occur during integument development: anticlinal divisions and phenolic compound accumulations in the exotesta, whose cells become palisade; predominantly periclinal divisions and cell expansion in the mesotesta, where the rapheal bundle differentiates; differentiation of the hourglass-cell layer adjacent to the palisade; fusion of outer and inner integuments, which remain individualized structures only at the micropylar end; and intense pectin impregnation in the mesotesta thicker walls with lignification restricted to the xylem. At the hilar pole, the Faboideae seed characteristic structure develops, with double palisade layer, subhilar parenchyma, and tracheid bar. The younger nucellus shows thicker pectic cell walls and is consumed during seed formation. The endosperm is nuclear and, after cellularization, shows peripheral cells with dense lipid content; the seeds are albuminous. The axial embryo shows fleshy cotyledons, which accumulate lipid and protein reserves; starch is rare. Although the seed structure is characteristic of the Fabaceae, the inner integument coalesces into the outer integument without being reabsorbed.  相似文献   

6.
Summary In the seed coat ofGasteria verrucosa the deposition of phytomelan takes place during seed development in three stages. Phytomelan is a black cell wall material which is chemically very inert. First the radial walls and part of the transverse cell wall of the outer epidermis of the outer integument become thickened by exocytosis of dictyosome vesicles. Callose is deposited at the tangential plasma membrane against those walls. After the callose deposition about two thirds of the original cell volume is filled with callose. During the second stage the callose is broken down, probably into glucose monomers or small polymers. At the same time cellulose is deposited at the outer tangential plasma membrane, forming a wall between the dissolving callose and the plasma membrane. In the third phase small granules appear in the solution of dissolved callose. which grow out and finally fuse to form a block of phytomelan, consisting of spherical 15-nm units. Remarkable is the function of the callose: it determines the size of the phytomelan block, and it probably functions as carbohydrate source for the phytomelan synthesis and/or for the cellulose inner layer. In this study transmission electron microscopy and cryo scanning electron microscopy are used to study the three developmental stages of the formation of the phytomelan layer.  相似文献   

7.
By microinjecting rhodamine-conjugated pig brain tubulin into living pea stem epidermal cells it has been possible to follow cortical microtubules beneath the outer tangential wall (OTW) as they re-orientate from a transverse to a longitudinal alignment. Earlier immunofluorescence studies on fixed material have shown that parallel cortical microtubules circumnavigate the cell forming apparently continuous arrays which are transverse, oblique or longitudinal to the cell's long axis. If the array re-orientates as a whole then microtubules along the radial walls would be expected to share the alignment of those on the tangential walls. There are, however, reports that microtubules beneath the outer tangential wall have a different orientation from microtubules at the radial cell walls, raising important questions about the construction and behaviour of the array. Using computer-rotated stacks of optical sections collected by confocal scanning laser microscopy it has been possible to display the microtubules along radial as well as tangential walls of the same microinjected cells. These observations demonstrate for living epidermal cells that when microtubules are aligned longitudinally at the outer epidermal wall they remain oblique or transverse at the radial walls. The array may not therefore re-orientate as a whole but seems to undergo re-organization on only one cell face. However, despite the differing angles between the OTW and radial walls microtubules still form patterns which at the level of the confocal microscope are continuous from one cell face to another, around the cell.
It is concluded that some organizing principle attempts to establish overall organization at the cellular level but that this can be perturbed by local re-organization of dynamic microtubules in subcellular domains. This study emphasizes the importance of the outer epidermal wall and its associated cytoskeleton in initiating changes in the direction of cell expansion.  相似文献   

8.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

9.
The development and/or modification of special acid etching and macerating techniques permits pyritized fossils of Leclercqia complexa to be separated into their carbonaceous wall remains and pyrite lumen—pit casts. These carbonized and pyritic portions can then be studied separately by both light and SEM microscopy and information from both modes compared with that obtainable from carbonaceous compression fossils of L. complexa. This combination of techniques, preservation modes and methods of analysis, allows a synthesis of information obtainable from each, as well as providing a check on errors of interpretation due to preservation mode and method of observation. The developmental sequence of the secondary wall thickenings of the protoxylem elements is shown to be annular to connected annular and spiral, with both exarch and mesarch maturation. The metaxylem shows a transition through reticulate to multiseriate round, oval, and elongate bordered-pitted tracheids. Different wall facets of separated pyrite tracheid casts can be examined by the SEM and variations in wall structure and pitting characterized. Cells of the outer cortex are 6 to 10 times longer than wide, have thickened vertical walls and end walls that vary from nearly horizontal to angles of overlap of 50 degrees.  相似文献   

10.
Summary The process of microsporogenesis and microgametogenesis was studied at the ultrastructural level in wild-typeArabidopsis thaliana ecotype Wassilewskija to provide a basis for comparison with nuclear male-sterile mutants of the same ecotype. From the earliest stage studied to mature pollen just prior to anther dehiscence, microsporocyte/microspore/pollen development follows the general pattern seen in most angiosperms. The tapetum is of the secretory type with loss of the tapetal cell walls beginning at about the time of microsporocyte meiosis. Wall loss exhibits polarity with the tapetal protoplasts becoming located at a distance from the inner tangential walls first, followed by an increase in distance from the radial walls beginning at the interior edge and progressing outward. The inner tangential and radial tapetal walls are completely degenerated by the microspore tetrad stage. Unlike other members of the Brassicaceae that have been studied, the tapetal cells ofA. thaliana Wassilewskija also lose their outer tangential walls, and secretion occurs from all sides of the cells. Exine wall precursors are secreted from the tapetal cells in a process that appears to involve dilation of individual endoplasmic reticulum cisternae that fuse with the tapetal cell membrane and release their contents into the locule. Following completion of the exine, the tapetal cell plastids develop membranebound inclusions with osmiophilic and electron-transparent regions. The plastids undergo ultrastructural changes that suggest breakdown of the inclusion membranes followed by release of their contents into the locule prior to the complete degeneration of the tapetal cells.  相似文献   

11.
Features of the epidermis such as stomata, hairs, cork and silica cells are described from both light and electron microscope studies. The stomatal complex consists of two guard cells and two subsidiary cells. After division of the guard mother cell a pore is left at each end of the dividing wall. The cork and silica cells arise from a single another cell and develop differentially. The silica cell enlarges more than the cork cell and finally becomes filled with solidified silica. The outer tangential and radial walls of the cork cells become very thick-walled, whereas the inner tangential and radial walls of the silica cells become thickened. The outer tangential wall of the silica cell remains thin and is covered with a thin layer- of cuticle. This wall frequently collapses in old cells leaving a depression in the surface of the stem. The change in the ultrastructure of the cork and silica cells are described and the possible functions of these cells discussed.  相似文献   

12.
An exocarp sensu stricto develops from the outer epidermis of the ovary wall. At maturity it comprises extensively radially elongated palisade-like parenchyma cellS. Besides having an outer cuticle, the outer tangential and outer parts of the radial cell walls of these cells are strongly cutinized. Large, permanently open stomata and saucer-shaped depressions also characterize the exocarp. The mature mesocarp sensu stricto consists of secondarily thickened parenchyma and brachysclereidS. An abundance of tanniniferous deposits and crystals, as well as secretory ducts associated with the vascular bundles also form part of the mature mesocarp. Derivatives of the inner epidermis of the ovary wall differentiate into the stratified endocarp sensu stricto. At maturity this comprises consecutive layers of macrosclereids, osteosclereids (typified by a capitate part and cell wall flutes), brachysclereids, and crystalliferous sclereidS. Pericarp structure is related to its taxonomic significance and the possible role of micromorphological characters in the survival strategy of Ozoroa paniculosa. It is shown that ontogenetic studies contribute to the precise interpretation of previously described cell layers, ensuring that homologous tissues are compared in different taxa.  相似文献   

13.
The fine structure of primary, secondary, and tertiary stages of Zea endodermal cell development was investigated. The casparian strip formed in situ in the anticlinal walls and remained at a fixed point relative to the endodermis-pericycle boundary. The only protoplasmic structure that had a constant spatial association with the developing strip was the plasmalemma. Plasmodesmata appeared to be more numerous on the tangential walls than on radial walls; only rarely were they located in the casparian strip. The suberized lamella developed on inner and outer tangential walls before it appeared on the radial walls. No cytoplasmic organelles were found to have any particular spatial association with this layer. The suberized lamella was about 0.04 μm thick except near plasmodesmata and along the adaxial margin of the casparian strip, where it was thicker. Occasionally it failed to form along the abaxial margin of the strip. The adherent affinity between plasmalemma and casparian strip was lost after the strip was covered by suberized lamella. The secondary wall became asymmetrically thickened by differential deposition of successive lamellae. A thin layer of secondary wall material extended across the floor of each pit. Pit cavities often contained mitochondria, and plasmodesmata were restricted to the pits. The plasmodesmata were constricted where they entered the thin layer of secondary wall material and where they penetrated the suberized lamella. The various stages of cell development tended to be asynchronous. No passage cells were observed. Endodermal cell development in Zea closely resembles that described for barley.  相似文献   

14.
The ultrastructure of the canal cells and the canal filling substance ofCitrus limon have been studied. At maturity the canal cells are very rich in cytoplasm. Their inner tangential walls lining the canal are much thickened and formed by two layers: the outer corresponds to the original wall, the inner is formed by subsequent deposition of abundant materials of different origin. This thickening occurs at the same time as the filling of the stylar canal. Both events are paralleled by considerable dictyosomic activity, the formation of a large amount of rough endoplasmic reticulum, and the incorporation of small cytoplasmic masses into the cell wall, due to plasmalemma evaginations. — The material in the stylar canal has a heterogeneous ultrastructure aspect and consists of polysaccharides, proteins and lipids; it presumably provides nutrients for the growing pollen tubes.Research performed under CNR program Biology of Reproduction.  相似文献   

15.
Equisetum trichoblasts are densely cytoplasmic, containing numerous starch-containing plastids, mitochondria, and concentrations of rough endoplasmic reticulum with attached polysomes. Numerous vesicles of Golgi origin are present, containing a lightly staining fibrillar material; these vesicles appear to fuse with the wall. The outer tangential and radial walls become thickened while the inner tangential wall remains thin with numerous plasmodesmata. As the trichoblasts develop into root hairs, vacuolation occurs, resulting in large vacuoles. This may represent autolytic vacuolation. The cytoplasm of the root hairs is similar to that of the trichoblasts.  相似文献   

16.
The development of microspores/pollen grains and tapetum was studied in fertile Rosmarinus officinalis L. (Lamiaceae). Most parts of the cell walls of the secretory anther tapetum undergo modifications before and during meiosis: the inner tangential and radial cell walls, and often also the outer tangential and radial wall, acquire a fibrous appearance; these walls become later transformed into a thin poly-saccharidic film, which is finally dissolved after microspore mitosis. Electron opaque granules found within the fibrous/lamellated tapetal walls consist of sporopollenin-like material, but cannot be interpreted as Ubisch bodies. The middle lamella and the primary wall of the outer tangential and radial tapetal walls remain unmodified, but get covered by an electron opaque, sporopollenin-like layer. Pollenkitt is formed only by lipid droplets from the ground plasma and/or ER profiles, the plastids do not form pollenkitt precursor lipids. Tapetum maturation (“degeneration”) does not take place before late vacuolate stage.

The apertures are determined during meiosis by vesicles or membrane stacks on the surface of the plasma membrane. The procolumellae are conical, but at maturity the columellae are more cylindrical in shape. The columellar bases often fuse, but a genuine foot layer is lacking. The formation of the endexine starts with sporopollenin-accumulating white lines adjacent to the columellar bases. Later, the endexine grows more irregularly by the accumulation of sporopollenin globules. In mature pollen the intine is clearly bilayered.

Generative cells (GCs) and sperm cells contain a comparatively large amount of cytoplasm, and organelles like mitochondria, dictyosomes, ER, and multi-vesicular bodies, but no plastids; GCs and sperms are separated from the vegetative cell only by two plasma membranes.  相似文献   

17.
A new silicified wood, Sclerospiroxylon xinjiangensis Wan, Yang et Wang nov. sp., is described from the Cisuralian (lower Permian) Hongyanchi Formation in southeast Tarlong section, Turpan City, Xinjiang Uygur Autonomous Region, northwestern China. The fossil wood is composed of pith, primary xylem and Prototaxoxylon-type secondary xylem. The pith is solid, circular, heterocellular, with sclerenchyma and parenchyma. The primary xylem is endarch to mesarch, with scalariform thickenings on tracheid walls. The secondary xylem is pycnoxylic, composed of tracheids and parenchymatous rays. Growth rings are distinct. Tracheids have mostly uniseriate, partially biseriate araucarian pitting on their radial walls. Helical thickenings are always present on both the radial and the tangential walls. Rays are 2–14 cells high, with smooth walls. There are 2 to 7, commonly 2 to 4 cupressoid pits in each cross-field. Leaf traces suggest that Sxinjiangensis nov. sp. was evergreen with a leaf retention time of at least 15 years. Based on the sedimentological evidence, growth rings within the Sxinjiangensis nov. sp. could have been caused by seasonal climatic variations, with unfavorable seasons of drought or low temperature. Low percentage of latewood in each growth ring is probably due to the intensity of climatic seasonality and/or long leaf longevity.  相似文献   

18.
BENNETT  D. M. 《Annals of botany》1982,50(2):239-245
Electron-probe microanalysis was used to investigate the locationof silicon at the proximal end of the seminal and adventitiousroots, of almost mature field-grown specimens of Hordeum sativumJess., Avena sativa L. and Triticum aestivum L. In the seminal roots silicon was confined to the endodermis,where it was present in the thickened inner tangential and radialwalls. The outer tangential walls also contained silicon inall of the cells in wheat and in occasional cells in barleyand oats. The adventitious roots of the three cereals displayed differencesin silicon deposition. In barley, silicon was present in allthe walls of the endodermal cells, whereas in oats it was onlylocated in the inner tangential and radial walls. Wheat showedcultivar differences, no silicon was detected in Capelle Desprez,but it was present in the thickened endodermis of Little Jossand Hustler. In all the samples studied silicon was absent fromthe sub-epidermal sclerenchyma layer. The results are discussed in relation to the possible functionsof the endodermis and the signficance of silicification. Hordeum sativum Jess, barley, Avena sativa L, oat, Triticum aestivum L, wheat, silicon deposition, electron-probe microanalysis  相似文献   

19.
Summary The development of mestome sheath cells ofAegilops comosa var.thessalica was studied by electron microscopy. Anatomical and cytological observations show that this grass belongs to the C3 or non-Kranz plants. In the asymmetrically thickened walls of mestome sheath cells a suberized lamella is present. This lamella is deposited asynchronously. In the midrib and the large lateral bundles it appears first in the outer and inner walls and usually later in the radial walls. In the small lateral bundles its appearance is delayed in the inner walls of those cells situated on the xylem side. At maturity the suberized lamella is observed in all cell walls; however, in the small lateral bundles it is partly or totally absent from the walls of some cells situated on the xylem side. Tertiary wall formation is asynchronous as well, for it generally follows the deposition pattern of the suberized lamella.During the development of the mestome sheath cells microtubules show marked changes in their number and orientation, being fewer and longitudinal during suberin deposition. Dictyosomes are very active and may be involved in primary and tertiary wall formation. Endoplasmic reticulum cisternae are abundant and partly smooth, while plasmalemmasomes may function to reduce the plasmalemma extension. However, cytoplasmic structures that are clearly involved in suberin synthesis could not be identified.Suberized lamellae react strongly with silver hexamine. This is probably due to post-fixation with osmium tetroxide.On the basis of structural characteristics the mestome sheath may be regarded as an endodermis (cf., alsoFahn 1974). The significance of this view for water and assimilate exchange between the mesophyll and the bundle is discussed.This report represents a portion of a doctoral dissertation.  相似文献   

20.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号