首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae–coronatum and the G. caledonium–geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Guillermo A. Galván and István Parádi contributed equally to this research and share first co-authorship.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

3.
Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.  相似文献   

4.
No previous studies have been conducted on the diversity and population of arbuscular mycorrhizal fungi (AMF) in relation to organically grown chili (Capsicum frutescens L.) in Thailand. This study was carried out to investigate the diversity and status of AMF populations at four organically managed farms in Ubon Ratchathani and Sisaket provinces. The effects of each AMF species on the growth and nutrient uptake of chili grown in sterile, organically managed soil were determined. Fourteen AM fungal taxa belonging to the genera Acaulospora (4 spp.), Entrophospora (1 sp.), Glomus (7 spp.) and Scutellospora (2 spp.) were found. Among these, Glomus was the dominant genus found at all sites, followed by Acaulospora. The spore density and root colonization of AMF on chili did not vary significantly among the sites. The effects of ten selected AMF species on the growth of chili showed that Gl. clarum RA0305 increased the growth, flowering, and fruit production of chili, and also increased the P uptake significantly, compared to non-mycorrhizal plants. This fungus showed the highest potential as a promoter of growth, flowering and yield in organically managed chili production.  相似文献   

5.
We examined the role ofarbuscular mycorrhizal fungi (AMF) in thebioprotection of the sand dune grass Leymus arenarius against soil fungi andnematodes. Six soil fungi (Fusariumnivale, Fusarium sp., Cladosporiumherbarum, Cladosporium sp., Phomasp., Sporothrix sp.) and four species ofnematodes (Pratylenchoidesmagnicauda, Paratylenchusmicrodorus, Rotylenchus goodeyi, Merlinius joctus) were isolated from a coastalsand dune in Iceland where a population of L. arenarius was declining in vigour. Acommercial AMF inoculum (Microbio Ltd. England)containing Glomus caledonium, G.fasciculatum, and G. mossae was used.Seedlings of L. arenarius were grownunder controlled conditions in sterile sand andsubjected to the following treatments: (1)control, (2) + AMF, (3) + AMF + soil fungi, (4)+ AMF + nematodes, (5) + AMF + nematodes + soilfungi, (6) + soil fungi, (7) + soil fungi +nematodes, (8) + nematodes. Mycorrhizal plantshad significantly the highest root dry weightof all treatments. Mycorrhizal plants hadsignificantly higher leaf dry weight thanplants in other treatments, with the exceptionof AMF inoculated plants exposed to nematodes. Mycorrhizal plants exposed to soil fungi andnematodes had significantly higher growthparameters except total number of leaves thanAMF inoculated plants exposed to both soilfungi and nematodes. Mycorrhizal plantssubjected to a dual application of soil fungiand nematodes did not vary significantly in anygrowth parameters from plants without AMF thatwere exposed to a dual application of soilfungi and nematodes. This suggests asynergistic effect of soil fungi and nematodesthat break down the protection of AMF againstpathogens. The results are discussed inrelation to plant dynamics of sand duneecosystems.  相似文献   

6.

Background and aims

We investigated the genetic diversity of arbuscular mycorrhizal fungi (AMF) in soils and the roots of Phalaris aquatica L., Trifolium subterraneum L., and Hordeum leporinum Link growing in limed and unlimed soil, the influence of lime application on AMF colonization and the relationship between AMF diversity and soil chemical properties.

Methods

The sampling was conducted on a long-term liming experimental site, established in 1992, in which lime was applied every 6 years to maintain soil pH (in CaCl2) at 5.5 in the 0–10 cm soil depth. Polymerase chain reaction, cloning and sequencing techniques were used to investigate the diversity of AMF.

Results

Altogether, 438 AMF sequences from a total of 480 clones were obtained. Sequences of phylotypes Aca/Scu were detected exclusively in soil, while Glomus sp. (GlGr Ab) and an uncultured Glomus (UnGlGr A) were detected only in plant roots. Glomus mosseae (GlGr Aa) was the dominant AMF in the pastures examined; however, the proportion of G. mosseae was negatively correlated with soil pH, exchangeable Ca and available P. Generally, diversity of the AMF phylotypes was greater in the bulk unlimed soil and plants from this treatment when compared to the limed treatments.

Conclusions

Long-term lime application changed soil nutrient availability and increased AMF colonization, but decreased AMF phylotype diversity, implying that soil chemistry may determine the distribution of AMF in acid soils. Future studies are required to explore the functions of these AMF groups and select the most efficient AMF for sustainable farming in acid soils.  相似文献   

7.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gentiana verna, Gentiana acaulis, and accompanying plant species from two species-rich Swiss alpine meadows located in the same area. The aim of the study was to elucidate the impact of host preference or host specificity on the AMF community in the roots. The roots were analyzed by nested PCR, restriction fragment length polymorphism screening, and sequencing of ribosomal DNA small-subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic sequence types. The AMF community composition was strongly influenced by the host plant species, but compositions did not significantly differ between the two sites. Detailed analyses of the two cooccurring gentian species G. verna and G. acaulis, as well as of neighboring Trifolium spp., revealed that their AMF communities differed significantly. All three host plant taxa harbored AMF communities comprising multiple phylotypes from different fungal lineages. A frequent fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., suggesting some degree of host preference for this fungus in this habitat. In conclusion, the results indicate that within a relatively small area with similar soil and climatic conditions, the host plant species can have a major influence on the AMF communities within the roots. No evidence was found for a narrowing of the mycosymbiont spectrum in the two green gentians, in contrast to previous findings with their achlorophyllous relatives.  相似文献   

8.
Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil   总被引:7,自引:0,他引:7  
The occurrence of arbuscular mycorrhizal fungi (AMF) in a copper mining area was investigated. Soil samples were collected from six sites at the Mineração Caraiba, Bahia State, northeastern Brazil, comprising: (1) a site that receives the waste product; (2) a site that receives low grade deposits; (3) the interface between the caatinga and site 1; (4) the surroundings of the industrial area; (5) the site for extracting topsoil for land filling; (6) the preserved caatinga. Thirty-two plant species were identified around the collection locations. Trap cultures were maintained in the greenhouse for 3 months, using bahia grass ( Paspalum notatum Flügge) as the host plant. Spores were extracted from soil and 21 AMF species (15 Glomus and one of each of Acaulospora, Archaeospora, Entrophospora, Gigaspora , Paraglomus and Scutellospora) were identified. In site 1, plants or AMF were not found during the dry season. Site 6, with native vegetation, had the highest number of plants and AMF species. The disturbed sites showed less plant diversification, with the community of AMF being quantitative and qualitatively affected by disturbance.  相似文献   

9.
Analysis of arbuscular mycorrhizal (AM) fungal diversity through morphological characters of spores and intraradicular hyphae has suggested previously that preferential associations occur between plants and AM fungi. A field experiment was established to investigate whether AM fungal diversity is affected by different host plants in upland grasslands. Indigenous vegetation from plots in an unimproved pasture was replaced with monocultures of either Agrostis capillaris or Lolium perenne. Modification of the diversity of AM fungi in these plots was evaluated by analysis of partial sequences in the large subunit (LSU) ribosomal RNA (rDNA) genes. General primers for AM fungi were designed for the PCR amplification of partial sequences using DNA extracted from root tissues of A. capillaris and L. perenne. PCR products were used to construct LSU rDNA libraries. Sequencing of randomly selected clones indicated that plant roots were colonised by AM fungi belonging to the genera Glomus, Acaulospora and Scutellospora. There was a difference in the diversity of AM fungi colonising roots of A. capillaris and L. perenne that was confirmed by PCR using primers specific for each sequence group. These molecular data suggest the existence of a selection pressure of plants on AM fungal communities.  相似文献   

10.
The diversity potential of arbuscular mycorrhizal fungi (AMF) in three different tropical soils of southern part of India was assessed by traditional morpho-typing of AMF-spores and by culture-independent nested-PCR of internal transcribed spacer region of ribosomal genes. The population diversity of AMF in soil was strongly correlated with available P2O5 in soil. Among the three different soils, black-cotton soil had more diversified AMF species than alluvial and red sandy soils. Pooled data of morpho-typing and sequence-driven analysis revealed that Glomus, Gigaspora, Scutellospora and Acaulospora are the AMF genera present in these soils. The diversity of AMF in soil differs with the mycorrhiza colonizing the plant roots.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.  相似文献   

12.
This study aimed to assess AMF diversity in various plant species in lakes with low and relatively high P concentrations to elucidate possible correlations with environmental factors in order for better understanding the functioning of mycorrhizal fungi in submerged plants. A considerable diversity of AMF communities was observed in the lakes with low dissolved P concentrations, especially in the roots of Littorella uniflora. Glomus group A, Archaeospora and Acaulospora were the most frequent and diverse AMF lineages with eight, seven and four phylotypes at Littorella uniflora in at least six lakes with low dissolved P concentrations. In theses lakes, AMF were for the first time observed in the roots of J. bulbosus, a member of a family previously thought to be non-mycorrhizal. In the lakes with relatively high dissolved P concentrations, the frequency decreased from Acaulospora, found at three locations, to Archaeospora at two locations and Glomus group A and Paraglomus at one location.All chemical parameters of the surface water layer, except pH, revealed significant (p ≤ 0.01) differences between the lakes with low and relatively high dissolved P concentrations. Mean Mg2+, Ca2+, K+, NH4+, CO2, o-PO43− and HCO3 were 3, 13.5, 15.7, 19.5, 31 and 42.6 times higher, respectively, in the lakes with relatively high dissolved P concentrations compared to the lakes with low dissolved P concentrations. AMF occurred more abundantly with low phosphate and high redox values in the lakes than with high phosphate and low redox values. The pH-value, the total-calcium and total-phosphorus concentrations were strongly correlated with the occurrence of Glomus phylotypes 4 and Archaeospora phylotypes 5 and 8, and a bit less with Acaulospora phylotype 4 and Archaeospora phylotype 3. In such lakes the presence of a diverse AMF community still enables the uptake of sufficient P for isoetid plant species despite the prevailing ‘ultra-oligotrophic’ conditions. As a consequence, macrophyte plant communities in lakes with relatively high dissolved P concentrations are less dependent on AMF colonization for their development.  相似文献   

13.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

14.
The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.  相似文献   

15.
We amplified and sequenced partial 18S rDNA of fungi in the roots of 11 African myco-heterotrophic plants out of four angiosperm families (Burmanniaceae, Thismiaceae, Triuridaceae, and Gentianaceae). The sequences were cladistically analyzed with published sequences of arbuscular mycorrhizal fungi. We show that all investigated African myco-heterotrophic plants are associated with arbuscular mycorrhizal fungi within a clade of Glomus (Glomus-group A). We reveal a fine-level mycorrhizal specificity for a particular set of arbuscular mycorrhizal fungi within Glomus-group A by Afrothismia hydra (Thismiaceae). Furthermore, we show that the roots of two myco-heterotrophic plant individuals, besides being colonized by representatives of Glomus-group A, also contain DNA of Acaulospora sp. Consequently, Acaulospora is interpreted as a facultative mycorrhizal associate.  相似文献   

16.
While the effect of disturbance on overall abundance and community composition of arbuscular mycorrhizal (AM) fungi has been researched in agricultural fields, less is known about the impact in semi-natural grasslands. We sampled two AM plant species, Festuca brevipila and Plantago lanceolata, from an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three to Diversisporaceae. Only three phylotypes were closely related to known morphospecies. Soil disturbance significantly reduced phylotype richness and changed the AM fungal community composition. Most phylotypes, even closely related ones, showed little or no overlap in their distribution and occurred in either the control or disturbed plots. We found no evidence of host preference in this system, except for one phylotype that preferentially seemed to colonize Festuca. Our results show that disturbance imposed a stronger structuring force for AM fungal communities than did host plants in this semi-natural grassland.  相似文献   

17.
 The purpose of this study was to compare the effect of salinity on the symbiotic efficiencies and mycelial infectivity of two arbuscular mycorrhizal fungi (AMF), one isolated from saline soils (Glomus sp.) and the other (Glomus deserticola) from nonsaline soils (belonging to the Estación Experimental del Zaidín collection). Lettuce plants inoculated with either of these two fungi or maintained as uninoculated controls were grown in soil with three salt concentrations (0.25, 0.50 or 0.75 g NaCl kg–1 dry soil). Both AMF protected host plants against salinity. However, when the results of shoot dry weight and nutrient contents were expressed relative to the total length of mycorrhiza formed, it was found that both AMF differed in their symbiotic efficiencies. These differences were more evident at the two highest salt levels. Glomus sp.-colonized plants grew less and accumulated less N and P, whereas they formed a higher amount of mycorrhiza. The mechanism by which Glomus sp. protected plants from the detrimental effects of salt was based on the stimulation of root development, while the effects of G. deserticola were based on improved plant nutrition. The increase in salinity of soil decreased the hyphal growth and/or viability of Glomus sp. to a higher extent than those of G. deserticola since the mycelial network generated by G. deserticola was more infective than that of Glomus sp. Accepted: 8 September 2000  相似文献   

18.
Nonphotosynthetic mycorrhizal plants, so‐called mycoheterotrophic plants, have long attracted the curiosity of botanists and mycologists. Recent advances in molecular methods based on fungal‐specific PCR amplification have dramatically enhanced the identification of their host mycorrhizal fungi. However, studies investigating the fungal hosts of arbuscular mycorrhizae‐forming mycoheterotrophs are still limited in Asia, which is known as one of the diversity hot spots of mycoheterotrophs that parasitize arbuscular mycorrhizae (AM). Therefore, we aimed to reveal the mycorrhizal associations of two Asian, fully mycoheterotrophic Burmannia species by molecular identification. Sequences of the small subunit ribosomal DNA showed that both Burmannia species are associated with several distinct lineages of Glomus group Ab. Because Glomus group Ab fungi have been confirmed as fungal hosts of various mycoheterotrophic plants in Africa and South America, we suggest they are widely exploited by AM‐forming mycoheterotrophs globally.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) are applied in agriculture to improve plant nutrition and confer better resistance to biotic and abiotic stresses. Spinacia oleracea L. is an economically important herbaceous crop characterized by limited tolerance to water stress. We compared the effects of three species of AMF belonging to the genus Glomus on gas exchange rates, growth and yield of spinach plants exposed to acute and prolonged water stress. Inoculated plants always gave better results than control (non-inoculated), stressed ones, being G. clarum the species that provided the significantly best effects and G. monosporum the less remarkable ones. Mycorrhizal inoculation is a valid tool to provide water stress resistance to horticultural crops, and experimental comparisons among different mycorrhizal strains can help to optimize the effect through the identification of specific associations.  相似文献   

20.
The arbuscular mycorrhizal (AM) fungi colonizing the sporophytes of the eusporangiate rattlesnake fern (Botrychium virginianum, Ophioglossaceae) in its Hungarian population were investigated in the present study. Different regions of the nrRNA gene complex were analyzed using two different primer sets. These produced similar results for the detected AM fungi phylotypes. Several AM fungal lineages were associated with sporophytes of B. virginianum. Phylogenetic analyses of different partial small subunit datasets grouped one lineage into the Gigasporaceae, showing similarities with Scutellospora sequences. In addition to unidentified Scutellospora phylotypes, it is possible that S. gregaria also colonized the fern. Several AM fungal phylotypes colonizing the sporophytes grouped into Glomus group A. They did not form distinct clades but grouped with sequences of AM fungi with different geographic and host origins. One main lineage clustered into the widespread G. fasciculatum/G. intraradices group and one into the subgroup GlGrAc, while others had no affinity to the subgroups of Glomus group A. As AM fungal phylotypes associated with B. virginianum seem to belong to widespread AM fungal taxa and show no specificity to this fern, we suppose that the previously described special anatomy of AM of B. virginianum is determined by the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号