首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The spatial heterogeneity of ecosystems as well as temporal activity patterns of organisms can have far‐reaching effects on predator–prey relationships. We hypothesised that spatiotemporal constraints in mesohabitat use by benthic fish predators would reduce habitat overlap with benthic invertebrates and lead to mesohabitat‐specific predation risks. 2. We analysed the spatiotemporal activity patterns of two small‐bodied benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), and of benthic invertebrates in a small temperate stream during three 24‐h field experiments. By applying a novel method of field video observation, we monitored the spatiotemporal foraging behaviour of the fish in their natural environment. A parallel analysis of invertebrate mesohabitat use by means of small area Hess sampling allowed a direct estimation of habitat overlap at a pool–riffle scale. 3. Gudgeon showed a dominant spatial activity pattern preferring pools at all times of day, whereas stone loach used both mesohabitats but with a distinct temporal (nocturnal) activity pattern. The patterns of residence were not identical with those of active foraging. Invertebrate community composition differed significantly between mesohabitats but not between times of day. More than half of the total dissimilarity between pools and riffles was accounted for by six invertebrate taxa. Five of these were subject to higher fish predation in pools than in riffles. The total prey consumption of the two fish species together in pools was about three times as high as in riffles. Trophic niche breadth of stone loach and thus its predation range was broader than that of gudgeon. 4. These results indicate that the potential predation risk for stream invertebrates depends on the combination of spatial and temporal patterns of both predator and prey. Given the distinct differences in predation risk found between pools and riffles, we conclude that spatial heterogeneity at the mesohabitat scale can influence mechanisms and consequences of selective predation. We also suggest that the analysis of spatiotemporal predator–prey relationships should not be based on the premise that the main residence habitat and active foraging habitat of a predator are identical.  相似文献   

2.
Since periphytic biofilm is an important source of food in lotic ecosystems, it is important to understand how key ecological factors affect the accrual and loss of algal biomass and sediment in the biofilm. We designed a field experiment to evaluate the effects of mesohabitat type (pools and riffles), grazing fish (control and exclusion), and substrate roughness (smooth and rough) on chlorophyll a, ash-free dry mass (AFDM), and total dry mass in a subtropical stream. Mesohabitat type did not influence the effect of grazers on periphyton. However, rough substrates accumulated more total dry mass in pools than in riffles, while smooth substrates accumulated similar amounts of total dry mass in both mesohabitats. The accrual of AFDM and chlorophyll a was greater on rough than on smooth substrates, regardless of mesohabitat. Treatments without fish accrued more total dry mass, AFDM, and chlorophyll a than treatments with fish, showing that fish play a major role in this stream by removing sediment and algal biomass. These results suggest that habitat simplification in the scale of substrate roughness and loss of large grazers may impact the accrual and loss of algal biomass and sediment in lotic ecosystems.  相似文献   

3.
We investigated the influence of mesohabitats on fish communities and on attributes of a multimetric index of fish integrity in the River Meuse basin. Three consecutive 150 m sectors in a Meuse tributary (Ourthe, Belgium), each divided in two or three sub-sections presenting various percentages of mesohabitats (riffles, runs and pools), were sampled by electrofishing. In each sub-section, relative and absolute biomasses of each fish species were estimated. The presence of limnophilic cyprinids was inversely correlated (r 2 = 0.70 and 0.56 for absolute and relative biomass, respectively) with the percentage of riffles. Salmonids preferred runs and their absolute biomass was highly dependent (r 2 = 0.71) on the proportion of this mesohabitat, whereas biomass of limnophilic cyprinids was highly correlated (r 2 = 0.75 and r 2 = 0.82 for absolute and relative biomass, respectively) with pools. A positive correlation (r 2 = 0.58) was established between relative biomass of predators and the percentage of this mesohabitat. An IBI was calculated for the three sectors on the basis of results from the entire Meuse catchment. Scores of most metrics showed low variation among sectors but values of two metrics (% of individuals as tolerant, % of individuals as ubiquitous spawners) were greatest in sector 2, where pools predominated. Further, the lowest IBI score (51/65, integrity class: fair to good) was recorded in sector 2 where pools dominated, while sector 1 (where runs dominated) obtained the highest score (63/65, integrity class: excellent). Sector 3 which has a balanced proportion of riffles and runs obtained an intermediate score (57/65). Considering the response of IBI to the natural variation of mesohabitat proportions, it appears that an accurate sampling requires the prospection of a variety of mesohabitats (with a majority of runs) for the evaluation of river quality.  相似文献   

4.
The top-down and bottom-up properties of model food webs that include intraguild predation and self-limiting factors such as cannibalism are investigated. Intraguild predation can dampen or even reverse the top-down effects predicted by food chain theory. The degree of self-limitation among the intraguild prey is a key factor in determining the direction and strength of the top-down response. Intraguild predation and self-limiting factors can also substantially alter the bottom-up effects of enrichment. These results can help explain the disparate results of trophic cascade experiments in lakes, where cascades are usually seen when large Daphnia are the primary herbivores, but not when smaller-bodied herbivores are dominant. Top-down manipulations should cascade at least modestly to phytoplankton in those lakes whose food web can be reasonably approximated by a chain (typically, those where Daphnia is the dominant herbivore), as predicted by food chain theory. On the other hand, smaller-bodied zooplankton are often preyed upon heavily by invertebrate predators as well as by planktivorous fish, thereby introducing elements of intraguild predation into these food webs. In this case, conventional food chain theory is likely to give incorrect predictions. Very large cascade effects may be due primarily to regime shifts between intraguild predation-dominated food webs and those that more resemble food chains, rather than due to the simple food chain cascade usually considered.  相似文献   

5.
Theoretical treatments of intraguild predation and its effects on behavioral interactions regard the phenomenon as a size‐structured binary response wherein predation among competitors is completely successful or completely unsuccessful. However, intermediate outcomes occur when individuals escape intraguild (IG) interactions with non‐lethal injuries. While the effects of wounds for prey include compromised mobility and increased predation risk, the consequences of similar injuries among top predators are not well understood, despite the implications for species interactions. Using an amphibian IG predator, Ambystoma opacum (Caudata: Ambystomatidae), we examined associations between non‐lethal injuries and predator body size, foraging strategy, microhabitat selection, and intraspecific agonistic interactions. Wounds were common among IG predators, generally increasing in frequency throughout larval ontogeny. Non‐lethal injuries were associated with differences in predator body size and behavior, with injured predators exhibiting smaller body sizes, increased use of benthic microhabitats, reduced agonistic displays, and increased risk of intraspecific aggression. While such effects were not ultimately associated with reduced foraging success, non‐lethal injury could contribute to niche partitioning between injured and healthy predators via habitat selection, but injured predators likely continue to exert predatory pressure on IG and basal prey populations. Our results indicate that studies of top‐down population regulation should incorporate injury‐related modifications to both prey and predator behavior and size structure.  相似文献   

6.
We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).  相似文献   

7.
Intraguild predation is the simplest, ubiquitous form of trophic omnivory, known to greatly influence the structure and functioning of natural and managed food webs. Although alternative states are fundamental to intraguild predation dynamics, only necessary conditions for alternative states have been previously reported. Using simple models, we found complex but systematic patterns in which different alternative states occur along a productivity gradient, and clarified the sufficient conditions to separate these patterns. We found that two quantities known to control the necessary conditions also determine the sufficient conditions: (1) relative energy transfer efficiency through alternative trophic pathways to an intraguild predator, and (2) relative resource exploitation ability between intraguild prey and predator. These governing quantities suggest how body size and stoichiometric relations between intraguild prey and predators can influence the possibility of alternative states. Our results indicate that food webs involving intraguild predation have a high potential of complex alternative states, and their management can be highly precarious.  相似文献   

8.
1. Although theory suggests that intraguild predation destabilises food webs and may result in exclusion of species, empirical observations of food webs reveal that it is a common interaction. It has been proposed that habitat structure reduces the interaction strength of intraguild predation, thus facilitating the coexistence of species. 2. This was tested using acarodomatia, tiny structures on plant leaves, and predatory mites, which usually reside in these domatia. Sweet pepper plants (Capsicum annuum L.) were used, which possess domatia consisting of tufts of hair, and coffee plants (Coffea arabica L.) with pit‐shaped domatia. 3. On sweet pepper, the predatory mites Neoseiulus cucumeris Oudemans and Iphiseius degenerans Berl. feed on each other's juveniles. Larvae of each of the species were therefore used as intraguild prey with adult females of the other species as intraguild predators. On coffee, a similar set‐up was used, with larvae and adult females of Amblyseius herbicolus Chant and Iphiseiodes zuluagai Denmark & Muma as intraguild prey and intraguild predators, respectively. 4. Domatia on detached, isolated sweet pepper and coffee leaves were either closed with glue or left open, after which larvae and adult predators were released. As a control, larvae were released on leaves with open or closed domatia without an adult predator. 5. Survival of larvae was high in the absence of the adult (intraguild) predator. In the presence of the intraguild predator, survival was significantly higher on leaves with open domatia than on leaves with closed domatia. 6. This shows that even such tiny structures as plant domatia may significantly affect the interaction strength of intraguild predation.  相似文献   

9.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

10.
In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos. Handling editor: Robert Bailey  相似文献   

11.
12.
Yurewicz KL 《Oecologia》2004,138(1):102-111
Behavioral and morphological traits often influence a key trade-off between resource acquisition and vulnerability to predation, and understanding trait differences between species can provide critical insight into their interactions with other species and their distributions. Such an approach should enhance our understanding of the criteria for coexistence between species that can interact through both competition and predation (i.e. intraguild predators and prey). I conducted a common garden experiment that revealed strong differences between three guild members (larval salamanders Ambystoma laterale, A. maculatum, and A. tigrinum) in behavior, morphology, and growth in the presence and absence of a shared top predator (the larval dragonfly Anax longipes). All three species also reduced their activity and modified their tail fin depth, tail muscle length, and body length in response to non-lethal Anax. Species that act as intraguild predators were more active and could grow faster than their intraguild prey species, but they also suffered higher mortality in laboratory predation trials with Anax. I also used survey data from natural communities to compare the distribution of Ambystoma species between ponds differing in abiotic characteristics and predatory invertebrate assemblages. An intraguild prey species (A. maculatum) was found more reliably, occurred at higher densities, and was more likely to persist late into the larval period in ponds with more diverse invertebrate predator assemblages. Taken together, these results indicate that top predators such as Anax may play an important role in influencing intraguild interactions among Ambystoma and ultimately their local distribution patterns.  相似文献   

13.
This article explores effects of adaptive intraguild predation on species coexistence and community structure in three species' food webs. Two Lotka-Volterra models that assume a trade-off between competition and predation strength are considered in detail. The first model does not explicitly model resource dynamics and is considered with both nonadaptive and adaptive intraguild predation; in the latter case predators choose their diet in order to maximize their instantaneous population growth rate. The second model includes resource population dynamics. Effects of adaptive intraguild predation on the community structure along a gradient in environment productivity are analyzed and compared with some experimental results of protist food webs. Conditions under which intraguild predation is adaptive are discussed for both models. It is proved that if intraguild predators are perfect optimizers then intraguild predation should decrease with increasing environmental productivity and adaptive intraguild predation is a stabilizing factor provided environmental productivity is high enough.  相似文献   

14.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

15.
1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These findings are important because they demonstrate how trophic complexity can create variation in the performance of intermediate predators that play important roles in temporary pond food webs.  相似文献   

16.
17.
18.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

19.
The introduction of nonnative salmonids in the Southern Hemisphere generally leads to a reduction in invertebrate abundance and changes in assemblage composition. In the Cape Floristic Region of South Africa, introduced rainbow trout Oncorhynchus mykiss is the dominant predator in many headwater streams, where they have replaced small‐bodied native fishes such as Breede River redfin Pseudobarbus burchelli. To examine the consequences of this species replacement on food web structure, we used a month‐long field experiment to compare the top‐down effects of Breede River redfin and rainbow trout on benthic invertebrate assemblages (abundance and composition) and basal resources (periphyton and particulate organic matter) in 1 × 1.5 m of plastic cages. Benthic invertebrate abundance was more strongly depleted in the cages with redfin than in the cages with trout, and redfin and trout had distinct effects on invertebrate assemblage composition. On the other hand, neither redfin nor trout had a significant influence over standing stocks of periphyton or organic matter, implying that their differential effects on benthic invertebrates did not cascade down to the base of the stream food web in our experiment. Gut content analysis showed that aquatic invertebrates contributed more to the diet of redfin, while terrestrial invertebrates contributed more to the diet of trout, which may be responsible for the relatively weak effect of trout on aquatic invertebrates. This pattern contrasts with nonnative salmonid impacts elsewhere in the Southern Hemisphere. That trout can strongly alter the structure of benthic invertebrate assemblages, in addition to severely depleting native fish abundance, in Cape Floristic Region headwater streams should be weighed into management decisions, and our findings highlight the need for a detailed understanding of species‐specific top‐down effects where native predators are replaced by invasive predators.  相似文献   

20.
Many plants employ indirect defenses against herbivores; often plants provide a shelter or nutritional resource to predators, increasing predator abundance, and lessening herbivory to the plant. Often, predators on the same plant represent different life stages and different species. In these situations intraguild predation (IGP) may occur and may decrease the efficacy of that defense. Recently, several sticky plants have been found to increase indirect defense by provisioning predatory insects with entrapped insects (hereafter: carrion). We conducted observational studies and feeding trials with herbivores and predators on two sticky, insect‐entrapping asters, Hemizonia congesta and Madia elegans, to construct food webs for these species and determine the prevalence of IGP in these carrion‐provisioning systems. In both systems, intraguild predation was the most common interaction observed. To determine whether IGP was driven by resource abundance, whether it reduced efficacy of this indirect defense and whether stickiness or predator attraction was induced by damage, we performed field manipulations on H. congesta. Carrion supplementation led to an increase in predator abundance and IGP. IGP was asymmetric within the predator guild: assassin bugs and spiders preyed on small stilt bugs but not vice versa. Despite increased IGP, carrion provisions decreased the abundance of the two most common herbivores (a weevil and a mealybug). Overall seed set was driven by plant size, but number of seeds produced per fruit significantly increased with increasing carrion, likely because of the reduction in the density of a seed‐feeding weevil. Observationally and experimentally, we found that carrion‐mediated indirect defense of tarweeds led to much intraguild predation, though predators effectively reduced herbivore abundance despite the increase in IGP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号