首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, T ion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. T Na and T K were approximately equal (∼0.8) and considerably greater than T Cl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract.  相似文献   

2.
After treatment of intact human erythrocytes with SH-oxidizing agents (e.g. tetrathionate and diamide) phospholipase A2 cleaves approx. 30% of the phosphatidylserine and 50% of the phosphatidylethanolamine without causing hemolysis (Haest, C.W.M. and Deuticke, B. (1976) Biochim. Biophys. Acta 436, 353–365). These phospholipids are scarcely hydrolysed in fresh erythrocytes and are assumed to be located in the inner lipid layer of the membrane (Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L.L.M. (1973) Biochim. Biophys. Acta 323, 178–193). The enhancement of the phospholipid cleavage is now shown to be accompanied by a 50% decrease of the membrane SH-groups and a cross-linking of spectrin, located at the inner surface of the membrane, to oligomers of < 106 dalton.Blocking approx. 10% of the membrane SH groups with N-ethylmaleimide suppresses both the polymerization of spectrin and the enhancement of the phospholipid cleavage. N-Ethylmaleimide, under these conditions, reacts with three SH groups per molecule of spectrin, 0.7 SH groups per major intrinsic 100 000 dalton protein (band 3) and 1.1 SH groups per molecule of an extrinsic protein of 72 000 daltons (band 4.2). Blocking studies with iodoacetamide demonstrate that the SH groups of the 100 000-dalton protein are not involved in the effects of the SH-oxidizing agents.It is suggested that a release of constraints imposed by spectrin enables phosphatidylserine and phosphatidylethanolamine to move from the inner to the outer lipid layer of the erythrocyte membrane and that spectrin, in the native erythrocyte, stabilizes the orientation of these phospholipids to the inner surface of the membrane.  相似文献   

3.
The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes.  相似文献   

4.
A hydrophobic uncharged fluorescent probe of 4-dimethylaminochalcone (DMC) interacted with synthetic phospholipid membranes. Comparison of absorption spectra and fluorescence of DMC in the membranes and organic solvents shows that in the membranes the DMC molecules are located not in the hydrocarbon layer but in the polar regions near the surface. The probe is distributed regularly along the surface forming no dimers and clusters. Polar groups which surround the probe in the membrane are less mobile than the molecules of organic solvents at the same temperature. The evaluation shows that the relaxation time of polar groups in the probe environment is longer than 0.15-10(-9) sec. The DMC molecules may be located in different sites of the membrane surface, which seem to differ from one another in the mobility of polar groups.  相似文献   

5.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

6.
Summary This paper is a report on the reconstitution of the lipid matrix of the outer membrane of Gram-negative bacteria as an asymmetric planar bilayer. This is the first time that a planar membrane is described, which consists on one side of a phospholipid (PL) mixture and on the other side of lipopolysaccharide (LPS). Therefore, strong emphasis is placed on a physical characterization of this membrane via its electrical properties. The membranes were prepared from spread monolayers or from vesicle-derived monolayers. Contrary to observations for symmetric phospholipid membranes, specific capacitances of (0.67±0.02) F·cm–2, breakdown voltages between 200 and 400 mV and specific conductances between 10–8 and 2×10–7S·cm–2 were obtained independent of the preparation method. The LPS-containing membranes were stable up to 3 hr if they were formed and kept at temperatures above the hydrocarbon chain melting temperature of the LPS. For the specific capacitance, a dependence on the aperture radius was observed. This is explained by assuming a toroidal transition zone at the rim of the aperture.First results on the action of the pore-forming -toxin fromStaphylococcus aureus on bilayers of different composition demonstrate particular characteristics of this asymmetric bilayer system. The pore-formation rate is highest in symmetric phospholipid bilayers, considerably lower in asymmetric PL/LPS systems and fully inhibited in LPS/LPS systems.  相似文献   

7.
Lipids, carefully extracted from fresh human erythrocytes, form liquid-crystalline structures in water. A phase diagram of this system was constructed, characterizing, by X-ray diffraction, the structures which form as a function of concentration of lipid and temperature. One extended range of concentration of the phase diagram, in which a single lamellar phase exists, permitted further analysis of the diffraction data. This phase consists of lipid layers of constant thickness separated by water layers of varying thickness according to the water content of the system. The distribution of the electron density is precisely analyzed and the amplitude of the reflections is, at all concentrations, proportional to the Fourier Transform of an isolated lipid layer. This shows that the lipid layer is filled with the hydro-carbon chains of the phospholipids and is covered on both sides by their hydrophilic groups. Cholesterol, present in high concentration in erythrocyte membranes, is located so that part of its steroid nucleus is between the polar groups of the phospholipid molecules while the rest of the molecule extends into the inner hydrocarbon layer.  相似文献   

8.
The proton decoupled 40.48 M Hz 31P NMR spectrum of intact and unperturbed membrane-enclosed vesicular stomatitis virus (serotype Indiana) exhibited two distinct maxima. These can be resolved into a narrow, symmetric line and a broad asymmetric line. The 31P NMR spectrum of a multilamellar (unsonicated) preparation of the extracted viral lipids exhibited a line shape similar to that of the intact virus. A sonicated vesicle preparation of the extracted viral lipids exhibited a narrow symmetric line. The narrow component in the intact virus spectrum may be attributed to small membrane fragments. Phospholipase C digestion of the intact virus resulted in substantial reduction in intensity of both components which suggests that much of the contribution to both peaks is due to phosphate in the phospholipid polar head groups.The phospholipid phosphates in both sonicated and unsonicated preparations of the extracted viral lipids exhibited substantially longer relaxation times than did those in the intact virus. The short relaxation time emanating from the intact virus preparation is caused by immobilization of the phospholipid head groups which could be due to lipid-protein interactions. Trypsin treatment of vesicular stomatitis virions, which results in complete removal of the exterior hydrophilic segment of the membrane glycoprotein, increased the 31P relaxation time to a value similar to that observed in the protein-free total lipid extracts; this finding provides supporting evidence for the role of virus glycoprotein in shortened relaxation times. A reversible temperature-dependent change in apparent line width and absence of an effect of cholesterol on the 31P phospholipid spectrum were also demonstrated.  相似文献   

9.
10.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines, is activated by phosphorylation-dependent binding to 14-3-3 proteins. The N-terminal domain of TH is also involved in interaction with lipid membranes. We investigated the binding of the N-terminal domain to its different partners, both in the unphosphorylated (TH-(1–43)) and Ser19-phosphorylated (THp-(1–43)) states by surface plasmon resonance. THp-(1–43) showed high affinity for 14-3-3 proteins (Kd ∼ 0.5 μm for 14-3-3γ and -ζ and 7 μm for 14-3-3η). The domains also bind to negatively charged membranes with intermediate affinity (concentration at half-maximal binding S0.5 = 25–58 μm (TH-(1–43)) and S0.5 = 135–475 μm (THp-(1–43)), depending on phospholipid composition) and concomitant formation of helical structure. 14-3-3γ showed a preferential binding to membranes, compared with 14-3-3ζ, both in chromaffin granules and with liposomes at neutral pH. The affinity of 14-3-3γ for negatively charged membranes (S0.5 = 1–9 μm) is much higher than the affinity of TH for the same membranes, compatible with the formation of a ternary complex between Ser19-phosphorylated TH, 14-3-3γ, and membranes. Our results shed light on interaction mechanisms that might be relevant for the modulation of the distribution of TH in the cytoplasm and membrane fractions and regulation of l-DOPA and dopamine synthesis.  相似文献   

11.
Summary The apparent membrane fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene has been reported to be lower in intact erythrocytes than in isolated erythrocyte membranes. Although this difference was once suggested to be caused by the fluidizing effect associated with the loss of erythrocyte proteins during membrane isolation, it is currently thought to be an artifact resulting from intense light scattering properties of intact erythrocytes which overwhelm extrapolation methods of correcting for light scattering. This study confirmed that, at erythrocyte concentrations greater than 107 cells/ml, this difference was caused by intense light scattering; however, at erythrocyte concentrations less than 4.0 × 106 cells/ml, the anisotropy values for erythrocytes and isolated membranes are identical, demonstrating that intense light scattering can be overcome with dilute suspensions of cells.  相似文献   

12.
Amidination of the outer and inner surfaces of the human erythrocyte membrane   总被引:12,自引:0,他引:12  
We have synthesized a novel imidoester, isethionyl acetimidate, which is unable to penetrate the membrane of the human erythrocyte. It has the same specificity for amino groups as ethyl acetimidate, which penetrates the membrane. Either reagent can be labeled with 3H or 14C and, thus, be used to convert amines to radioactive amidines. An erythrocyte membrane saturated with either compound functions nearly normally. Therefore, the membrane can be double labeled if the amino groups on the outer surface of a cell are saturated with isethionyl acetimidate (e.g. labeled with 14C) and the remaining active sites are saturated with ethyl acetimidate (labeled with 3H). Alternatively, the membrane can be isolated after saturation with [14C]isethionyl acetimidate and treated with [3H]isethionyl acetimidate. From quantitative experiments of this kind we conclude that there are more than ten times as many reactive amino groups in protein on the inner surface than on the outer surface of the membrane. Nearly all of the reactive amino groups in lipid are on the inner surface. The localization of individual polypeptides confirms and extends assignments made previously by other techniques; as many as four major components may span the membrane. The proteins and lipids react to the same extent with ethyl acetimidate in the intact cell as they do in isolated membranes; this implies that the isolation does not load to major structural rearrangements.  相似文献   

13.
The influence of well-defined changes in the polar part of phospholipid molecules on the properties of black lipid membranes was studied using a series of phospholipids with identical hydrocarbon chains, but systematically changed polar groups. The hydrocarbon tails of the lipids under study were composed of 1,2-dipentadecylmethylidene glycerol. The polar parts differed in the degree of N-methylation and comprised phosphocholine, -N,N-dimethylethanolamine, -N-methylethanolamine and ethanolamine. Stable black lipid membranes could be formed with the solvents octane, decane, dodecane, tetradecane and hexadecane. The properties of gramicidin-induced single ionic channels changed systematically in membranes from the phosphatidylcholine to the phosphatidylethanolamine analogue, as indicated by an increase in the amplitude A of the unit conductance step and a decrease in the average channel life-time or duration τ. The series of τ-values was opposite to that expected from hydrocarbon thickness (specific capacitance). It is suggested that the surface tension γ is a relevant parameter for the prediction of τ-values.  相似文献   

14.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 °C, while that for phosphatidylserine spin label had only one transition at 30 °C.When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogeneous fluidity. Mg2+ or Mg2++ATP prevented the hemolysis-induced spectral changes. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 °C and vanishing at 40 °C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

15.
16.
The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from pig pancreas and Crotalus adamanteus and phospholipase D from cabbage, can hydrolyse phospholipid monolayers at pressure below 31 dynes/cm only.The phospholipases which can hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Clostridium welchii phospholipase A2 from Naja naja and bee venom and sphingomyelinase from Staphylococcus aureus, can hydrolyse phospholipid monolayers at pressure above 31 dynes/cm. It is concluded that the lipid packing in the outer monolayer of the erythrocyte membrane is comparable with a lateral surface pressure between 31 and 34.8 dynes/cm.  相似文献   

17.
Summary It has been shown that the capacitance, thickness and composition of black lipid films may depend strongly on the hydrocarbon solvent used in their formation. By the use of n-hexadecane, films have been formed which contain effectively no solvent and which are comparable to the leaflets of the mesomorphic phase of the pure lipid. These films have capacitances of ca. 0.6 F/cm2 and hydrocarbon thicknesses of ca. 31 Å. Thinner black films of higher capacitances are also described.The capacitances of biological membranes are, in contrast, nearer to 1 F/cm2, and it is suggested that the hydrocarbon region in these membranes may often be thinner than in the lipid leaflets. This suggestion is consistent with some X-ray and lipid composition data. It is pointed out that if the membranes contain abnormally thin lipid leaflets, the area per polar head group of the phospholipid must be increased, and that hydrocarbon is thereby exposed to the aqueous phases. Non-polar protein residues could then interact with these hydrocarbon areas, thus tending to stabilize the expanded leaflet.  相似文献   

18.
Theoretical considerations show that the presence of the polar group regions in bimolecular lipid membranes will produce a small (2–3%) dispersion of the bimolecular lipid membrane capacitance at low frequencies (0.1–100 Hz).A dispersion in conductance will also result. Calculations are given of the resolution of phase angle and impendance amplitude required to detect this dispersion and a new measuring technique is described which can achieve this. From the experimental result presented for lecithin bimolecular lipid membranes a determination was made of the individual capacitances and conductances of both the hydrocarbon and polar groups regions. The polar group conductance was found to vary from 700 μΩ?1 · cm?2 (in 1 mM KCl) to 2000 μΩ?1 · cm?2 (in 1 M KCl).The polar group capacitances were found to be approx.30 μF · cm?2 and not systematically dependent on the concentration of the external electrolyte.  相似文献   

19.
Phenytoin (diphenylhydantoin) is an antiepileptic agent effective against all types of partial and tonic-clonic seizures. Phenytoin limits the repetitive firing of action potentials evoked by a sustained depolarization of mouse spinal cord neurons maintained in vitro. This effect is mediated by a slowing of the rate of recovery of voltage activated Na+ channels from inactivation. For this reasons it was thought of interest to study the binding affinities of phenytoin with cell membranes and their perturbing effects upon membrane structures. The effects of phenytoin on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that phenytoin interacts with cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that phenytoin perturbed a class of lipids found in the outer moiety of cell membranes; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the erythrocyte membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the insertion of phenytoin in the outer monolayer of the red cell membrane. This is the first time that an effect of phenytoin on the red cell shape is described. However, the effects of the drug were observed at concentrations higher than those currently found in plasma when phenytoin is therapeutically administered.  相似文献   

20.
M Kurebe 《Life sciences》1979,24(3):275-281
The delipidated Ca++-ATPase prepared from intestinal brush border membranes showed a higher activity of Ca++-independent ATPase, a lower Km value for ATP and a higher Km value for Ca++ than its original membrane Ca++-ATPase. The addition of phosphatidylcholine re-activated the delipidated Ca++-ATPase to approximately 89 % of its original membrane Ca++-ATPase activity but did not restore the affinity for Ca++. This phospholipid raised the Km value for ATP but had little effect on the Km value for Ca++. Palmitic acid elevated the Km value for Ca++ but did not change the Km value for ATP. Kinetic analyses of these data suggest that the hydrocarbon chain of phosphatidylcholine is an important rate-limiting factor for the access of Ca++ to the enzyme and the polar head groups of phosphorylcholine and ester bond may be the factor for the access of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号