首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterokaryon incompatibility among Aspergillus niger strains is a widespread phenomenon that is observed as the inability to form stable heterokaryons. The genetic basis of heterokaryon incompatibility reactions is well established in some sexual filamentous fungi but largely unknown in presumed asexual species, such as A. niger. To test whether the genes that determine heterokaryon incompatibility in Neurospora crassa, such as het-c, vib-1 and pin-c, have a similar function in A. niger, we performed a short in silico search for homologues of these genes in the A. niger and several related genomes. For het-c, pin-c and vib-1 we did indeed identify putative orthologues. We then screened a genetically diverse worldwide collection of incompatible black Aspergilli for polymorphisms in the het-c orthologue. No size variation was observed in the variable het-c indel region that determines the specificity in N. crassa. Sequence comparison showed only minor variation in the number of glutamine coding triplets. However, introduction of one of the three N. crassa alleles (het-c2) in A. niger by transformation resulted in an abortive phenotype, reminiscent of the heterokaryon incompatibility in N. crassa. We conclude that although the genes required are present and the het-c homologue could potentially function as a heterokaryon incompatibility gene, het-c has no direct function in heterokaryon incompatibility in A. niger because the necessary allelic variation is absent.  相似文献   

2.
In this study we report the biochemical characterization of a hypothetical protein from Aspergillus oryzae exhibiting sequence identity with feruloyl esterase and tannase from the genus Aspergillus. The purified recombinant protein showed a hydrolytic activity toward the ethyl, propyl, or butyl esters of 4-hydroxybenzoic acid, but did not show feruloyl esterase or tannase activity. Finally, the enzyme decreased the antimicrobial activity of parabens against A. oryzae via hydrolysis of the ester bond present in butyl 4-hydroxybenzoic acid.  相似文献   

3.
Phytases hydrolyse the phosphomonoesters of phytate (myo-inositol-1,2,3,4,5,6-hexakis phosphate) and thus find uses in plant and animal production through the mobilisation of phosphorus from this source. The structure of partially deglycosylated Aspergillus niger PhyA is presented in apo form and in complex with the potent inhibitor myo-inositol-1,2,3,4,5,6-hexakis sulfate, which by analogy with phytate provides a snapshot of the Michaelis complex. The structure explains the enzyme’s preference for the 3′-phosphate of phytate. The apo-and inhibitor-bound forms are similar and no induced-fit mechanism operates. Furthermore the enzyme structure is apparently unaffected by the presence of glycosides on the surface. The new structures of A. niger PhyA are discussed in the context of protein engineering studies aimed at modulating pH preference and stability.  相似文献   

4.
Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli–maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.  相似文献   

5.
Commercially available enzyme preparations were screened for enzymes that have a high ability to catalyze direct ester-synthesis of ferulic acid with glycerol. Only a preparation, Pectinase PL “Amano” produced by Aspergillus niger, feruloylated glycerol under the experimental conditions. The enzyme responsible for the esterification was purified and characterized. This enzyme, called FAE-PL, was found to be quite similar to an A. niger ferulic acid esterase (FAE-III) in terms of molecular mass, pH and temperature optima, substrate specificity on synthetic substrates, and the N-terminal amino acid sequence. FAE-PL highly catalyzed direct esterification of ferulic acid and sinapinic acid with glycerol. FAE-PL could feruloylate monomeric sugars including arabinose, fructose, galactose, glucose, and xylose. We determined the suitable conditions for direct esterification of ferulic acid with glycerol to be as follows: 1% ferulic acid in the presence of 85% glycerol and 5% dimethyl sulfoxide at pH 4.0 and 50 °C. Under these conditions, 81% of ferulic acid could be converted to 1-glyceryl ferulate, which was identified by 1H-NMR. The ability of 1-glyceryl ferulate to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was higher than that of the anti-oxidant butyl hydroxytoluene.  相似文献   

6.
Triphenylmethane dyes are considered to be one of the most recalcitrant pollutants in the environment. Malachite Green (MG) was successfully removed from aqueous solution by Pseudomonas sp. DY1 immobilization with Aspergillus oryzae. Inhibition test in the presence of sodium azide and nystatin indicated that A. oryzae was a natural immobilization reagent, and removal of MG by the immobilized cell pellets was attributed to the biodegradation by Pseudomonas sp. DY1. Optimum conditions of immobilization for maximum biodegradation were obtained using Taguchi design at 37 °C, inoculation size of Pseudomonas sp. DY1 (dry cell mass) 0.01 g, of A. oryzae (spore number) 1.0 × 109, initial pH 6.5. Decolorization and biodegradation of MG by immobilized pellets under optimum conditions were 99.5% and 93.3%, respectively. Immobilized pellets exhibited more than 96% decolorization after 16 days in batch condition, indicating it had stable and high biodegradation capabilities when immobilized for long-term operation.  相似文献   

7.
NADP-Glutamate dehydrogenase (NADP-GDH) located at the interface of carbon and nitrogen metabolism has the potential to dictate fungal carbon flux. NADP-GDH from Aspergillus terreus, itaconate producer and an opportunistic pathogen, was purified to homogeneity using novel reactive dye-affinity resins. The pure enzyme was extensively characterized for its biochemical and kinetic properties and compared with its well studied Aspergillus niger counterpart. The A. terreus NADP-GDH was more stable and showed non-competitive ammonium inhibition with respect to glutamate. It exhibited hyperbolic 2-oxoglutarate saturation albeit with a weak substrate inhibition. This is in contrast to the allosteric nature of the enzyme from other Aspergilli. Differential susceptibility to chymotrypsin is also consistent with the absence of substrate cooperativity and conformational changes associated with A. terreus NADP-GDH. The non-allosteric nature of A. terreus NADP-GDH provides a unique opportunity to assess the contribution of allostery in metabolic regulation.  相似文献   

8.
A novel simplified configuration is proposed for the conversion of biomass to ethanol using whole medium enzymatic cocktails (WM) and enzymatic extracts (EE) from different filamentous fungi (Trichoderma reesei, Aspergillus niger, and Aspergillus oryzae) cultivated under solid-state fermentation (SSF) for the hydrolysis of steam-exploded sugarcane bagasse (SESB). The hydrolyzed material derived from the saccharification of SESB using the combinations A. niger WM + T. reesei EE, A. oryzae WM + A. niger EE, and A. niger EE + T. reesei WM resulted in the best biomass conversion yields (66, 65, and 64 % of the theoretical reducing sugar yields, respectively). The best ethanol production (84 % of the theoretical yield) was obtained using the material hydrolyzed by a combination of A. oryzae WM + A. niger EE. The enzymatic conversion of SESB using on-site produced enzymes from the whole SSF cultivation medium, followed by an ethanol production step, is a potential configuration for the biomass to ethanol conversion process. This novel simplified configuration would enable the use of a single reactor system, avoiding the need for additional separation steps.  相似文献   

9.
The isolation and characterization of the chemical constituents of different parts of Mangifera indica, sound and infected with two pathogenic fungi, viz. Aspergillus niger and Fusarium moniliformae, are described. Natural occurrence of two polyketideshikimate-derived depsides is reported for the first time. Additionally, a number of xanthones, flavonoids, triterpenes and amino acids, not encountered before in this species, are reported. The co-occurrence of mangiferin, 1,3,6,7-tetra- and 1,3,5,6,7-pentaoxygenated xanthones and the quantitative variation of the latter two compounds with the growing of the plant and during the fungal infection are biochemically significant. The protector role of the flavonoids and other C15 metabolites to M. indica from the ingress of the fungal hyphae is indicated. The two pathogenic fungi secreted a number of mycotoxins in different parts of the host species during its vegetation and flowering periods. During the elaboration of these toxic metabolites, the host-pathogen interaction played an important role. Evidence is presented for A. niger as a mycotoxin producing fungus.  相似文献   

10.
Purification of a novel enantioselective epoxide hydrolase from Aspergillus niger M200 has been achieved using ammonium sulphate precipitation, ionic exchange, hydrophobic interaction, and size-exclusion chromatography, in conjunction with two additional chromatographic steps employing hydroxylapatite, and Mimetic Green. The enzyme was purified 186-fold with a yield of 15%. The apparent molecular mass of the enzyme was determined to be 77 kDa under native conditions and 40 kDa under denaturing conditions, implying a dimeric structure of the native enzyme. The isoelectric point of the enzyme was estimated to be 4.0 by isoelectric focusing electrophoresis. The enzyme has a broad substrate specificity with highest specificities towards tert-butyl glycidyl ether, para-nitrostyrene oxide, benzyl glycidyl ether, and styrene oxide. Enantiomeric ratios of 30 to more than 100 were determined for the hydrolysis reactions of 4 epoxidic substrates using the purified enzyme at a reaction temperature of 10 °C. Product inhibition studies suggest that the enzyme is able to differentiate to a high degree between the (R)-diol and (S)-diol product of the hydrolysis reaction with tert-butyl glycidyl ether as the substrate. The highest activity of the enzyme was at 42 °C and a pH of 6.8. Six peptide sequences, which were obtained by cleavage of the purified enzyme with trypsin and mass spectrometry analysis of the tryptic peptides, show high similarity with corresponding sequences originated from the epoxide hydrolase from Aspergillus niger LCP 521.  相似文献   

11.
Aspergillus niger is usually regarded as a beneficial species widely used in biotechnological industry. Obtaining the genome sequence of the widely used aconidial A. niger SH2 strain is of great importance to understand its unusual production capability. In this study we assembled a high-quality genome sequence of A. niger SH2 with approximately 11,517 ORFs. Relatively high proportion of genes enriched for protein expression related FunCat items verify its efficient capacity in protein production. Furthermore, genome-wide comparative analysis between A. niger SH2 and CBS513.88 reveals insights into unique properties of A. niger SH2. A. niger SH2 lacks the gene related with the initiation of asexual sporulation (PrpA), leading to its distinct aconidial phenotype. Frame shift mutations and non-synonymous SNPs in genes of cell wall integrity signaling, β-1,3-glucan synthesis and chitin synthesis influence its cell wall development which is important for its hyphal fragmentation during industrial high-efficiency protein production.  相似文献   

12.
Bismuth salicylate was found to inhibit the growth of a range of bacteria and yeast, “Candida albicans”. In general the growth of bacteria did not result in increase in bismuth solubilisation, in contrast, bismuth solubilisation increased following the growth of C. albicans. A significant increase in the biomass (dry weight) of Aspergillus niger and Aspergillus oryzae occurred in vitro when these fungi were grown in the presence of bismuth salicylate. Biomass increase occurred over a range of bismuth compound additions, which in the case of A. oryzae was associated with increase in the solubilisation of the insoluble bismuth compounds.  相似文献   

13.
We sequenced nucleosomal DNA fragments of the filamentous ascomycetes Aspergillus nidulans and Aspergillus oryzae and then mapped those sequences on their genomes. We compared the GC content and nucleosome density in the exonic and intronic regions in the genes of A. nidulans and A. oryzae. Although the GC content and nucleosome density in the exonic regions tended to be higher than those in the intronic regions, the difference in the distribution of the GC content was more notable than that of the nucleosome density. Next, we compared the GC content and nucleosome density in the exonic regions of 9616 orthologous gene pairs. In both Aspergillus species, the GC content did not correlate with the nucleosome density. In addition, the Spearman's rank correlation coefficient (ρ = 0.51) between the GC content of the exonic regions of the 9616 orthologous gene pairs was higher than that (ρ = 0.31) of the nucleosome densities of A. nidulans and A. oryzae. These results strongly suggest that the GC content in the exons of the orthologous gene pairs has been conserved during evolution but the nucleosome density has varied throughout.  相似文献   

14.
The degradation of xylan requires the action of glycanases and esterases which hydrolyse, in a synergistic fashion, the main chain and the different substituents which decorate its structure. Among the xylanolytic enzymes acting on side-chains are the α-glucuronidases (AguA) (E.C. 3.2.1.139) which release methyl glucuronic acid residues. These are the least studies among the xylanolytic enzymes. In this work, the gene and cDNA of an α-glucuronidase from a newly isolated strain of Aspergillus fumigatus have been sequenced, and the gene has been expressed in Pichia pastoris. The gene is 2523 bp long, has no introns and codes for a protein of 840 amino acid residues including a putative signal peptide of 19 residues. The mature protein has a calculated molecular weight of 91 725 and shows 99 % identity with a putative α-glucuronidase from A. fumigatus A1163. The recombinant enzyme was expressed with a histidine tag and was purified to near homogeneity with a nickel nitriloacetic acid (Ni-NTA) column. The purified enzyme has a molecular weight near 100 000. It is inactive using birchwood glucuronoxylan as substrate. Activity is observed in the presence of xylooligosaccharides generated from this substrate by a family 10 endoxylanase and when a mixture of aldouronic acids are used as substrates. If, instead, family 11 endoxylanase is used to generate oligosaccharides, no activity is detected, indicating a different specificity in the cleavage of xylan by family 10 and 11 endoxylanases. Enzyme activity is optimal at 37 °C and pH 4.5–5. The enzyme binds cellulose, thus it likely possesses a carbohydrate binding module. Based on its properties and sequence similarities the catalytic module of the newly described α-glucuronidase can be classified in family 67 of the glycosyl hydrolases. The recombinant enzyme may be useful for biotechnological applications of α-glucuronidases.  相似文献   

15.
Aspergillus oryzae is resistant to many kinds of antibiotics, which hampers their use to select transformants. In fact, the fungus is resistant to over 200 μg/ml of bleomycin (Bm). By enhancing the susceptibility of A. oryzae to Bm using Triton X-100 as a detergent and an ATP-binding cassette (ABC) pump inhibitor, chlorpromazine, to the growing medium, we established a novel transformation system by Bm selection for A. oryzae. In a medium containing these reagents, A. oryzae showed little growth even in the presence of 30 μg Bm/ml. Based on these findings, we constructed a Bm-resistance expression cassette (BmR), in which blmB encoding Bm N-acetyltransferase from Bm-producing Streptomyces verticillus was expressed under the control of a fungal promoter. We obtained a gene knockout mutant efficiently by Bm selection, i.e., the chromosomal ligD coding region was successfully replaced by BmR using ligD disruption cassette consisted of ligD flanking sequence and BmR through homologous recombination.  相似文献   

16.
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24 h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.  相似文献   

17.
Two glucoamylases (I and II) were produced during solid-state culture of Aspergillus hennebergi (A. niger group) on cassava meal, whereas one glucoamylase and one alpha-amylase were synthesized by the mould in liquid culture. These glucoamylases were acidic proteins with thermotolerant activities. Glucoamylase I was not a glycoprotein, but glucoamylase II and the glucoamylase from liquid cultures contained 15% of sugars. The alpha-amylase was significantly less thermotolerant and of smaller molecular weight. The influence of culture conditions on the production of different amylases by the same Aspergillus strain on the same substrate is discussed.  相似文献   

18.
The production of endo and exo-polygalacturonase (PG) by Aspergillus oryzae IPT 301 was studied in a stirred tank bioreactor (STR) and an internal circulation airlift bioreactor. Using a factorial experimental design, a soluble culture medium was defined which allowed the production of exo- and endo-PG comparable to that obtained in a medium containing suspended wheat bran. The soluble medium was used in tests to compare the production of these enzymes in the STR and airlift bioreactor. In these tests, after 96 h, maximum enzymatic activity values achieved for exo- and endo-PG were 65.2 units (U) per mL and 91.3 U mL−1, in the STR, with similar activity values of 60.6 U mL−1 and 86.2 U mL−1, respectively, being achieved in the airlift bioreactor. The airlift bioreactor also showed satisfactory results regarding the oxygen transfer rate in this process, indicating its potential to be used in an eventual larger scale production of exo- and endo-PG, with lower costs for both installation and operation.  相似文献   

19.
Dominik Mojzita 《FEBS letters》2010,584(16):3540-3544
l-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified l-xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l-arabinose and the deletion strain showed no reduced l-xylulose reductase activity but instead lost the d-mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l-arabinose and the deletion results in a strain lacking the NADPH-specific l-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a Km for l-xylulose of 25 mM and a νmax of 650 U/mg.  相似文献   

20.
The palm oil industry generates large amounts of lignocellulosic co-products. Palm kernel cake (PKC) and palm pressed fibre (PPF) have nutritional limitations as ingredients in animal feed, and are therefore little used. Solid-state fermentation (SSF) is one alternative treatment to improve the nutritional value of these co-products and to increase their possible use, through the production of enzymes such as lipases and xylanases. These enzymes can reduce the contents of undesirable compounds, such as lipids, and degrade some components of the fibres to improve the digestibility of these co-products. The fungi Aspergillus niger, Aspergillus oryzae and Aspergillus awamori were able to grow in PKC/PPF (40/60 w/w) culture medium by SSF, and to produce xylanase and lipase. A. niger showed the highest lipase activity (20.7?U g?1) at 72?h. A. awamori higher xylanase activity than the other fungi at all culture periods, reaching a maximum activity of 134.2?U g?1 at 72?h. The unfermented co-products contained 7.49% lipids and 7.38% non-fibrous carbohydrates (NFC). Lipase produced by these fungi during SSF reduced the lipid content by 36%, 40% and 45% for A. oryzae, A. awamori and A. niger, respectively. The production of xylanases by SSF probably increased the NFC contents by up to 64%. Fermented solids with A. oryzae and A. awamori had the highest levels of NFC, 20.3% and 13.94%, respectively, which improved the nutritional value of these co-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号