首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pheromone biosynthesis-activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis by activating PBAN receptor (PBANr), which triggers a specific signal transduction in the pheromone gland cells. We have shown that RNA interference (RNAi) of PBANr of Plutella xylostella significantly suppressed pheromone biosynthesis and subsequent mating behavior. In order to assess molecular events occurring downstream of PBAN signaling, we cloned partial sequences of Δ9 and Δ11 fatty acid desaturases of P. xylostella. Phylogenetic analysis indicated that these two desaturase genes were highly clustered with other desaturases associated with sex pheromone biosynthesis in other insects. RT-PCR analysis showed that Δ9 desaturase was dominantly expressed in adult females, whereas Δ11 desaturase was expressed in all P. xylostella developmental stages. When PBANr expression was suppressed by PBANr-RNAi, the treated females also showed significant suppression of expression of both desaturases. These results suggest that expressions of the two desaturases are controlled by PBAN and that the two desaturases may be involved as downstream components in sex pheromone biosynthesis of P. xylostella.  相似文献   

2.
3.
Species‐specific pheromone blends of nocturnal female moths, derived from fatty acid precursors, are produced and released for mate‐finding, and are initiated by the circadian, trophic hormone, Pheromone Biosynthesis Activating Neuropeptide (PBAN). PBAN, produced in the sub‐oesophageal ganglion, is a 33 amino acid neuropeptide with a minimum active core in its FXPRLamide C‐terminal. PBAN acts directly on pheromone gland cells of mature females by binding to a specific G‐protein‐coupled membrane receptor (GPCR), and thereby initiating a signal transduction cascade involving calcium and cAMP. This discussion will review recent developments concerning the identification of the PBAN GPCR, its regulation by juvenile hormone (JH), and its mode of action at the level of the pheromone biosynthetic pathway. The discussion will also include recent developments concerning events occurring as a result of the transfer of pheromonostatic compounds of male origin after mating.  相似文献   

4.
5.
The direct neurohormonal control of pheromone biosynthesis by pheromone biosynthesis activating neuropeptide (PBAN) was demonstrated in Helicoverpa (Heliothis) spp. using pheromone gland cultures in vitro. Pheromone gland activation involved the de novo production of the main pheromone component (Z)-11-hexadecenal as revealed by radio-TLC, radio-HPLC, and radio-GC. Activation was found to be a specific response attributed to pheromone gland cultures alone. Specificity of pheromonotropic activation was demonstrated to be limited to nervous tissue extracts. A sensitive and specific radioimmunoassay was developed using [3H]-PBAN, and the spatial and temporal distribution of PBAN-immunore-activity was studied. PBAN-immunoreactivity in brain complexes was found throughout the photoperiod and in all ages. From the distribution of PBAN-immunoreactivity it appears that PBAN release is affected by photoperiod. Pheromone gland cultures were found to be competent to pheromone production irrespective of age and photoperiod. Therefore, the neuroendocrine control of pheromone production operates at the level of neuropeptide synthesis and/or release and not at the level of the target tissue itself. The involvement of cyclic-AMP as a second messenger system was demonstrated. Brain extracts and PBAN were shown to stimulate dose- and time-dependent changes in intracellular cyclic-AMP levels. The role of cyclic-AMP in this mechanism was further verified by the ability of cyclic-AMP mimetics to mimic the pheromonotropic effect of brain extracts and PBAN. However, dose-response studies using PBAN and a hexapeptide C-terminal fragment of PBAN suggested that PBAN induces a two mechanism response, one occurring at low PBAN concentrations (high affinity receptor) and another at higher PBAN concentrations (low affinity receptor). Further evidence indicating a dual receptor system was obtained with the observation that the active phorbol ester (phorbol-12-myristate 13-acetate), the diacyl-glycerol analog (1,2-dioleolyl-sn-glycerol), and the intracellular calcium ionophore (ionomycin) mimicked the physiological action of PBAN and that lithium chloride had a pheromonostatic effect. The results indicate that pheromone glands also possess receptors that are linked to inositol phosphate hydolysis. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Isolated pheromone glands of Helicoverpa zea were utilized to investigate the physiological action of pheromone biosynthesis activating neuropeptide (PBAN) with regard to the role of calcium ions in stimulating pheromone biosynthesis under various incubation conditions. Incubation of glands with 1 microM or 1 nM PBAN produced a significant amount of pheromone after a 5 min incubation period and reached maximum pheromone production after 30 min. Glands incubated with PBAN for 1 min, and then without PBAN for 30 min, produced pheromone whether or not extracellular calcium was present during the first 1 min. The presence of lanthanum as a calcium channel blocker did not affect pheromone production if present during the first 1 min of incubation with PBAN. However, if calcium was absent or lanthanum ion was present during the 30 min of incubation, no pheromone was produced. A maximum amount of pheromone was reached when glands were incubated for 1 min with PBAN and for 10 min without PBAN, and repeated three times. The present results indicate that a time interval exists between PBAN binding to a receptor and opening of extracellular calcium channels. Calcium influx into the cytosol from extracellular stores is required for PBAN to stimulate pheromone production. This could be achieved by PBAN either binding periodically to the receptor or the plasma membrane calcium channel could remain activated for a period of time after the initial activation.  相似文献   

7.
8.
In most moths, sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). How the extracellular PBAN signal is turned into a biological response has been the focus of numerous studies. In the classical scheme of signal transduction, activated G proteins relay the extracellular signal to downstream effector molecules such as calcium channels and adenylyl cyclase. The role of calcium in PBAN signaling has been clearly demonstrated, but the possible involvement of cAMP is not as straightforward. While cAMP has been shown to be necessary for PBAN signaling in most heliothine species, there has been no definitive demonstration of its role in Bombyx mori. To address this question, we used degenerate RT-PCR to clone two Gs subunits, designated P50Gs1 and P50Gs2, from B. mori pheromone gland (PG) cDNAs. The two Gs proteins were expressed in all tissues examined and were not up-regulated in accordance with adult eclosion. Even though two bands corresponding to the approximate molecular weights of P50Gs1 and P50Gs2 were detected in PG homogenates, the Gs antagonist, NF449, had no effect on sex pheromone production. Furthermore, no changes in the intracellular cAMP levels were detected following PBAN stimulation.  相似文献   

9.
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.  相似文献   

10.
Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour''s gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN''s role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.  相似文献   

11.
Pheromone biosynthesis activating neuropeptide (PBAN) is a suboesophageal ganglion secretory polypeptide of insect, which activates the pheromone gland to produce sex pheromone biosynthesis in female silkworm, Bombyx mori. A Bombyx genomic library was screened by the method of plaque hybridization using the 32P-labeled BomDH cDNA as a probe. The genomic sequence encoding PBAN has been cloned and its structure is analyzed. The PBAN gene comprises two exons interspersed by a single intron 697 bp in length. Preceding the PBAN amino acid sequence is a 32-amino acid sequence containing two FXPRL amide peptides, which are α-SGNP (Ile-Ile-Phe-Thr-Pro-Lys-Leu) and β-SGNP (Ser-Val-Ala-Asn-Pro-Arg-Thr-His-Glu-Ser-Leu-Glu-Phe-Ile-Pro-Arg-Leu), which is followed by a Gly-Arg processing site. Immediately, after the PBAN amino acid sequence is a Gly-Arg processing site and a FXPRL amide peptide γ-SGNP (Thr-Met-Ser-Phe-Ser-Pro-Arg-Leu). It is suggested that besides PBAN, 7-, 8-, and 17-residue amidated peptides wer  相似文献   

12.
《Insect Biochemistry》1991,21(1):81-89
Pheromone biosynthesis in female redbanded leafroller moths (RBLR) is under control of a neuropeptide produced in the brain. A bioassay consisting of isolated abdomens was developed to test the mode of action of the pheromone biosynthesis activating neuropetide (PBAN). Pheromone titer and incorporation of radiolabeled acetate into pheromone could be monitored with this bioassay. Synthetic PBAN with sequences identical to PBAN isolated from Heliothis zea and Bombyx mori were active in inducing synthesis of pheromone in RBLR. Removal of the ventral nerve cord in isolated abdomens did not inhibit the action of PBAN. Small amounts of PBAN-like activity was found in hemolymph collected from normal females but not from decapitated females. Severing the VNC in vivo in normal females did not lower the pheromone titer. These data indicate that PBAN is released into the hemolymph and then travels to its site of action. A two-fold increase in both pheromone titer and radiolabeled acetate incorporation upon incubation with PBAN was shown with isolated pheromone glands. However, the differences between control and PBAN-induced values were smaller than those obtained with the isolated abdomen culture bioassay where a seven-fold increase was observed. A decrease in pheromone titer was seen upon the in vivo removal of the corpus bursae from normal females. Removal of the corpus bursae in the isolated abdomen cultures also abolished the activity of PBAN. However, cutting the cervix bursae and leaving the corpus bursae in the abdomen culture increased both titer and radiolabeled acetate incorporation into pheromone without the presence of PBAN. An aqueous extract made from the corpus bursae of 5-day-old females was also active by itself in inducing pheromone biosynthesis in the isolated abdomen cultures. Experiments performed using newly emerged females confirmed that the corpus bursae extracts will induce pheromone biosynthesis. These results indicate that both PBAN and the corpus bursae are involved in controlling pheromone biosynthesis in RBLR.  相似文献   

13.
Seven candidates for components of the female sex pheromone of Eilema japonica (Arctiidae, Lithosiinae) were detected in an extract of pheromone glands with a gas chromatograph-electroantennographic detector. The compounds were identified as (Z,Z)-6,9-icosadiene (D20), (Z,Z)-6,9-henicosadiene (D21), (Z,Z,Z)-3,6,9-henicosatriene (T21), (Z,Z)-6,9-docosadiene (D22), (Z,Z,Z)-3,6,9-docosatriene (T22), (Z,Z)-6,9-tricosadiene (D23), and (Z,Z,Z)-3,6,9-tricosatriene (T23). Assays using synthetic lures in a wind tunnel showed that D21 (proportion, 0.39), T21 (0.08), D22 (0.27), and T22 (0.26) are important for evoking full behavioral responses from the males. Titers of the pheromone components did not show clear temporal fluctuations. Moreover, decapitation of the female moth had no effect on the titers of pheromone components in the pheromone gland, suggesting that cephalic endocrine factors such as pheromone biosynthesis activating neuropeptide (PBAN) are not involved in the control of pheromone biosynthesis in this species.  相似文献   

14.
Du M  Yin X  Zhang S  Zhu B  Song Q  An S 《PloS one》2012,7(2):e31045

Background

Pheromone biosynthesis activating neuropeptide (PBAN) is a neurohormone that regulates sex pheromone synthesis in female moths. Bombyx mori is a model organism that has been used to explore the signal transduction pattern of PBAN, which is mediated by a G-protein coupled receptor (GPCR). Although significant progress has been made in elucidating PBAN-regulated lipolysis that releases the precursor of the sex pheromone, little is known about the molecular components involved in this step. To better elucidate the molecular mechanisms of PBAN-stimulated lipolysis of cytoplasmic lipid droplets (LDs), the associated lipase genes involved in PBAN- regulated sex pheromone biosynthesis were identified using digital gene expression (DGE) and subsequent RNA interference (RNAi).

Results

Three DGE libraries were constructed from pheromone glands (PGs) at different developed stages, namely, 72 hours before eclosion (−72 h), new emergence (0 h) and 72 h after eclosion (72 h), to investigate the gene expression profiles during PG development. The DGE evaluated over 5.6 million clean tags in each PG sample and revealed numerous genes that were differentially expressed at these stages. Most importantly, seven lipases were found to be richly expressed during the key stage of sex pheromone synthesis and release (new emergence). RNAi-mediated knockdown confirmed for the first time that four of these seven lipases play important roles in sex pheromone synthesis.

Conclusion

This study has identified four lipases directly involved in PBAN-stimulated sex pheromone biosynthesis, which improve our understanding of the lipases involved in releasing bombykol precursors from triacylglycerols (TAGs) within the cytoplasmic LDs.  相似文献   

15.
The control of pheromone biosynthesis by the neuropeptide PBAN was investigated in the moth Heliothis virescens. When decapitated females were injected with [2-(14)C] acetate, females co-injected with PBAN produced significantly greater quantities of radiolabeled fatty acids in their pheromone gland than females co-injected with saline. This indicates that PBAN controls an enzyme involved in the synthesis of fatty acids, probably acetyl CoA carboxylase. Decapitated females injected with PBAN showed a rapid increase in native pheromone, and a slower increase in the pheromone precursor, (Z)-11-hexadecenoate. Total native palmitate and stearate (both pheromone intermediates) showed a significant decrease after PBAN injection, before their titers were later restored to initial levels. In contrast, the acyl-CoA thioesters of these two saturated fatty acids increased during the period when their total titers decreased. When a mixture of labeled palmitic and heptadecanoic (an acid that cannot be converted to pheromone) acids was applied to the gland, PBAN-injected females produced greater quantities of labeled pheromone and precursor than did saline-injected ones. The two acids showed similar time-course patterns, with no difference in total titers of each of the respective acids between saline- and PBAN-injected females. When labeled heptadecanoic acid was applied to the gland alone, there was no difference in titers of either total heptadecanoate or of heptadecanoyl-CoA between PBAN- and saline-injected females, suggesting that PBAN does not directly control the storage or liberation of fatty acids in the gland, at least for this fatty acid. Overall, these data indicate that PBAN also controls a later step involved in pheromone biosynthesis, perhaps the reduction of acyl-CoA moieties. The control by PBAN of two enzymes, near the beginning and end of the pheromone biosynthetic process, would seem to allow for more efficient utilization of fatty acids and pheromone than control of only one enzyme.  相似文献   

16.
The control of Spodoptera littoralis sex pheromone biosynthesis has been investigated with synthetic pheromone biosynthesis activating neuropeptide (PBAN) and different labeled tracers using an in vitro isolated gland system. Responsiveness of the glands to PBAN stimulation was impaired by careless tissue manipulation. The fact that PBAN is active in the isolated gland system suggests that this might be a target organ for this peptide in S. littoralis. As reported previously with Br-SOG extracts and intact females, label incorporation into the pheromone increased in glands treated with PBAN from all the precursors tested. However, the formation of labeled intermediates from d5E11–14:Acid also occurred in glands incubated in the absence of the peptide, but the amounts of d5Z9, E11–14:Acid were lower in PBAN treated glands than in controls. These results indicate that PBAN controls pheromone biosynthesis in S. littoralis by regulating the reduction of acyl moieties. © 1994 Wiley-Liss, Inc.  相似文献   

17.

Background

The pyrokinin/pheromone biosynthesis-activating neuropeptide (PK/PBAN) plays a major role in regulating a wide range of physiological processes in insects. The ubiquitous and multifunctional nature of the PK/PBAN peptide family raises many questions regarding the mechanisms by which these neuropeptides elicit their effects and the nature of the receptors that mediate their functions.

Methods

A sex pheromone gland receptor of the PK/PBAN family from Heliothis peltigera female moth and a Spodoptera littoralis larval receptor were cloned and stably expressed, and their structural models, electrostatic potentials and cellular functional properties were evaluated.

Results

Homology modeling indicated highly conserved amino-acid residues in appropriate structural positions as experimentally shown for class A G-protein coupled receptors. Structural differences could be proposed and electrostatic potentials of the two receptor models revealed net charge differences. Calcium mobilization assays demonstrated that both receptors were fully functional and could initiate extracellular calcium influx to start PK/PBAN signal transduction. Evaluation of the signaling response of both receptors to PBAN and diapause hormone (DH) revealed a highly sensitive, though differential response. Both receptors responded to PBAN whereas only Spl-PK/PBAN-R exhibited a high response toward DH.

Conclusions

The structural, electrostatic and cellular functional differences indicate that different PK/PBAN in vivo functions may be mediated by different PK/PBAN receptors and elicited by different peptide(s).

General significance

The results advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that can serve as a basis for the development of new families of insect-control agents.  相似文献   

18.
19.
A mating duration of more than 6 h was necessary to permanently terminate the production of the sex pheromone (bombykol) in the silkworm moth, Bombyx mori L. (Lepidoptera: Bombycidae), although the female formed a bursa copulatrix including a spermatophore and laid fertilized eggs even after mating for only 0.5 h. The 6-h mated female again produced bombykol if given an injection of synthetic pheromonotropic neuropeptide (PBAN), which is known to activate pheromone biosynthesis in a virgin female. Extracts of brain-suboesophageal ganglion (SG) complexes, which were removed from 6- and 24-h mated females, showed strong pheromonotropic activities. These results indicated that the pheromone gland of the mated female maintained its ability to biosynthesize bombykol; however, it could not produce pheromone due to a suppression of PBAN secretion from the SG. Furthermore, bombykol titers did not decrease after mating in females with a transected ventral nerve cord, even after the injection of a spermatophore extract, suggesting that the suppression of PBAN secretion was mediated by a neural signal and not by a substance in the spermatophore. The mated females accumulated (10E, 12Z)-10,12-hexadecadienoic acid, a precursor of bombykol biosynthesis, in their pheromone glands as did decapitated females. © 1996 Wiley-Liss, Inc.  相似文献   

20.
《Journal of Asia》2002,5(1):43-48
This study was undertaken to clarify the suppression phenomenon of sex pheromone production after mating and its relationship to the physiological mechanism in adult females of Helicoverpa assulta, and determine the mating factor from males causing depletion of sex pheromonc production. Sex pheromone production of H. assulta females was mostly terminated in 3 hours after mating. Mated females maintained with a low titer of sex pheromone until 3 days when it started to increase again, which showed a characteristic of species mating more than once. The mated female again produced pheromone upon injection of pheromone biosynthesis activating neuropeptide (PBAN) or extracts of brain-suboesophageal ganglion complexes (Br-Sg) of mated female, which were shown similar pheromonotropic activities as compared with virgin females. These results indicated that the mating did not inhibit the receptivity of pheromone gland itself and PBAN biosynthesis in suboesophageal ganglion of the mated females. And it seems to support that the depletion of sex pheromone production is responsible for blocking of PBAN release from head. To investigate the mating factor from adult males, when extracts of reproductive organs of male were injected into hemocoel of virgin females evoking depletion of sex pheromone production as shown in mated female. The results suggest that a chemical substance(s) from the male reproductive organs could be responsible for the loss of sex pheromone biosynthesis in H. assulta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号