首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Support materials of low‐density for fluidized bed reactors provide several operational advantages, including lower energy requirements and proper biofilm growth balance. The aim of this investigation was to study the extent of biofilm growth and bed fluidization in an experimental reactor, using polyester resin (ρpr = 1220 kg/m3) and vitrified expanded perlite (ρvep = 1710 kg/m3) as alternative support materials to conventional silica sand. A noteworthy amount of biofilm was observed to be attached to both support materials from the very beginning of the bioreactor operation. Nevertheless, there were significant variations in biofilm growth and activity over the course of the experimental trials. For both perlite and polyester beds, the highest biofilm mass and the highest total number of mesophilic bacteria were observed between the 7th and the 10th day, showing a steady state trend at the end of the experimental runs. The chemical oxygen demand (COD) removal levels were concomitant with biofilm mass and total mesophilic bacteria changes, although the polyester bed efficiency was slightly higher than that for the perlite bed. As expected, the polyester bed was fluidized at a lower re‐circulation flow compared to the perlite bed. Reactor back‐washing was not required for these support materials since biomass excess was adequately separated by means of a special internal device. The efficiencies of removal of organic matter achieved were acceptable (up to 78 %) despite the low volume of the support material (25 %) and the low hydraulic retention time (30 min).  相似文献   

2.
Properties of a novel, synthetic biofilm were examined by using confocal scanning laser microscopy (CSLM) in combination with fluorescent probes and by investigating total protein content and specific beta-galactosidase activity during various steps of the biofilm preparation. Viable, but nongrowing Escherichia coli were entrapped in 10- to 80-mum-thick multilayer films, where a copolymer of acrylic and vinyl acetate was the immobilization matrix. Cell viability and distribution within the films were evaluated by developing a protocol to stain the bacteria with fluorescein isothiocyanate and propidium iodide, thereby labeling all cells green and dead cells red, respectively. Confocal microscopy facilitated viewing samples in the XY and XZ planes, and image analysis enabled counting of the cells. These experiments showed that the initial viability of the entrapped bacteria was 85% to 90%, cell distribution was uniform in the XY plane and cell number increased with increasing depth into the film. Specific beta-galactosidase assays developed here allowed comparison of the induction of lacZin suspended and immobilized cells. These experiments demonstrated that rehydration was an important step in biofilm preparation, and E. coli cast into synthetic biofilms with cell layers of at least 20 to 35 mum in thickness had gene induction characteristics similar to suspended cells. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
An artificial biofilm system consisting of Pseudomonas aeruginosa entrapped in alginate and agarose beads was used to demonstrate transport limitation of the rate of disinfection of entrapped bacteria by chlorine. Alginate gel beads with or without entrapped bacteria consumed chlorine. The specific rate of chlorine consumption increased with increasing cell loading in the gel beads and decreased with increasing bead radius. The value of an observable modulus comparing the rates of reaction and diffusion ranged from less than 0.1 to 8 depending on the bead radius and cell density. The observable modulus was largest for large (3-mm-diameter) beads with high cell loading (1.8 x 10(9) cfu/cm(3)) and smallest for small beads (0.5 mm diameter) with no cells added. A chlorine microelectrode was used to measure chlorine concentration profiles in agarose beads (3.0 mm diameter). Chlorine fully penetrated cell-free agarose beads rapidly; the concentration of chlorine at the bead center reached 50% of the bulk concentration within approximately 10 min after immersion in chlorine solution. When alginate and bacteria were incorporated into an agarose bead, pronounced chlorine concentration gradients persisted within the gel bead. Chlorine did gradually penetrate the bead, but at a greatly retarded rate; the time to reach 50% of the bulk concentration at the bead center was approximately 46 h. The overall rate of disinfection of entrapped bacteria was strongly dependent on cell density and bead radius. Small beads with low initial cell loading (0.5 mm diameter, 1.1 x 10(7) cfu/cm(3)) experienced rapid killing; viable cells could not be detected (<1.6 x 10(5) cfu/cm(3)) after 15 min of treatment in 2.5 mg/L chlorine. In contrast, the number of viable cells in larger beads with a higher initial cell density (3.0 mm diameter, 2.2 x 10(9) cfu/cm(3)) decreased only about 20% after 6 h of treatment in the same solution. Spatially nonuniform killing of bacteria within the beads was demonstrated by measuring the transient release of viable cells during dissolution of the beads. Bacteria were killed preferentially near the bead surface. Experimental results were consistent with transport limitation of the penetration of chlorine into the artificial biofilm arising from a reaction-diffusion interaction. The methods reported here provide tools for diagnosing the mechanism of biofilm resistance to reactive antimicrobial agents in such applications as the treatment of drinking and cooling waters. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The impact of storm-flow on river biofilm architecture was investigated using transmission (TEM) and scanning (SEM) electron microscopy. TEM resin substrata were colonized under light-grown (LG) or dark-grown (DG) conditions for 33 weeks in the Clywedog River, North Wales, prior to exposure to ambient-flow (approx. 60 cm·s?1) or storm-flow (approx. 235 cm·s?1+ river sediment) in a laboratory flume. Line transect methodology was used to quantify information from TEM ultrathin sections of LG material. In the LG ambient-flow biofilm, bacteria were more abundant directly adjacent to the substratum and were noticeably denser directly under the adnate diatom Cocconeis. Higher in the biofilm, the bacteria were loosely dispersed in the matrix between other cells. Cyanobacteria occurred most frequently as single cells but were also found in large “palisade” formations adjacent to the substratum. Significant horizontal and vertical nearest-neighbor associations were noted for both bacteria and cyanobacteria. Cells of Cocconeis were common adjacent to the substratum, providing shelter to, and often elevated upon, an “organic pad” of bacteria, cyanobacteria, and densely staining exopolysaccharide. Cyanobacteria and Cocconeis were resistant to removal by storm-flow, but Cocconeis frustules were sometimes damaged. Bacteria in the LG storm-flow samples were less common adjacent to the substratum and were sometimes more dispersed higher in the biofilm than in ambient-flow samples. We suggest that storm-flow hydrodynamic forces may redistribute bacteria adjacent to the substratum into higher areas of the biofilm. In addition, bacteria and the exopolysaccharide matrix were sometimes removed down to the substratum by storm-flow, unless beneath Cocconeis. The DG biofilm consisted almost entirely of bacteria. Storm-flow only removed surface growth from DG biofilms, and SEM revealed peritrich stalk abrasion and “blow-down.” Pre-disturbance biofilm architecture appears to influence the form of destruction. We suggest that the “microcosms” of Cocconeis and their underlying cells not only serve as an inoculum to recolonize the surface when conditions permit but enhance immigration by interrupting flow patterns across the surface.  相似文献   

6.
Activation and regeneration of whole cell biocatalytic activity via initial and subsequent induction of the lacZ gene was investigated in starved Escherichia coli using a novel synthetic biofilm. Stationary-phase bacteria were entrapped in 10-80 mum thick multi-layer films, where a copolymer of acrylic and vinyl acetate was the immobilization matrix. The E. coli were placed in a defined starvation medium containing essentially no nitrogen or carbon source and induced initially using lactose or isopropylthiogalactoside (IPTG). Subsequent inductions were performed with IPTG. Comparison studies with suspended bacteria showed that when IPTG was the initial inducing agent, induction kinetics are linear for both immobilized and suspended cells. After induction with lactose, however, a lag time is noted for suspended cells, but not for E. coli in the biofilm. Biocatalytic activity was successfully regenerated by re-inducing starved suspended cells 1-3 days after an initial induction with lactose. This regeneration was demonstrated in the synthesis of additional active beta-galactosidase. However, immobilized cells could be re-induced for at least 17 days after the initial induction, and viability in the synthetic biofilms remained greater than 90%, demonstrating that periodic induction is a valuable method for extending the life of whole cell biocatalysts. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
The transmission and scanning electron microscopes were employed to visualize the sequence of the biofilm development in the trickling wastewater filter. After the deposit of a small amount of debris upon a hard surface, the bacterial cells attach and develop the matrix on which the biofilm is formed. Protozoa invade the basic layer where they feed on the bacteria. The algae are seeded upon the bacterial matrix and grow so profusely that the bacteria must develop aerial colonies in the competition for food and oxygen. Destruction of the bacteria in the matrix and the weight and hydraulic pressure cause detachment of the biofilm and a new matrix must be developed.  相似文献   

8.
Biofilms are communities of tightly associated bacteria encased in an extracellular matrix and attached to surfaces of various objects, such as liquid or solid surfaces. Here we use the multi-channel wide field stereo fluorescence microscope to characterize growth of the Bacillus subtilis biofilm, in which the bacterial strain was triple fluorescence labeled for three main phenotypes: motile, matrix producing and sporulating cells. We used the feature point matching approach analyzing time lapse experimental movies to study the biofilm expansion rate. We found that the matrix producing cells dominate the biofilm expansion, at the biofilm edge, the expansion rate of matrix producing cells was almost the same as the velocity of the whole biofilm; however, the motile and sporulating cells were nearly rest. We also found that the biofilm expansion rate evolution relates to cell differentiation and biofilm morphology, and other micro-environments can influence the biofilm growth, such as nutrient, substrate hardness and colony competition. From our work, we get a deeper understanding of the biofilm growth, which can help us to control and to further disperse the biofilm.  相似文献   

9.
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self‐produced extracellular matrix. Although a biofilm is commonly described as a “cozy house” where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm‐dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.  相似文献   

10.
Activated sludge obtained from two municipal wastewater treatment facilities (WWTF) was used as seed sludge for enriched nitrifiers, which were later entrapped in polyvinyl alcohol. Seed sludge from one WWTF was acclimated to high ammonia level (1813 mg NH3-N l?1) through the return of sludge digester supernatant back to primary clarifier while seed sludge from the other WWTF was un-acclimated. To elucidate on how to control partial nitrification by entrapped cells, which could be different from suspended cells, kinetics of entrapped enriched nitrifiers were studied using a respirometric assay. The community of nitrifiers within the entrapment matrix, which was observed by fluorescence in situ hybridization (FISH) technique, was related to the nitritation and nitratation kinetics based on oxygen uptake rate. Maximum oxygen uptake rate, and substrate and oxygen affinities of both ammonia oxidizing bacteria (AOB) for nitritation and nitrite oxidizing bacteria (NOB) for nitratation in entrapped cells were lower than those of corresponding suspended cells. Under dissolved oxygen (DO) limiting conditions, nitratation was more suppressed than nitritation for suspended cells, while for the entrapped cells, the results were the contrary. A free ammonia (FA) inhibition affected only the un-acclimated sludge. Either FA inhibition or DO limitation might not be a sole effective control parameter to achieve partial nitrification by entrapped cells. FISH results revealed that Nitrosomonas europaea was the dominant AOB while Nitrobacter species was the dominant NOB in all cases. Heterotrophs were also present in the entrapment at 22.8 ± 18.6% and 41.5 ± 4.3% of total bacteria for acclimated and un-acclimated originated sludge. The availability of substrate and oxygen governed the distributions of AOB, NOB and heterotrophs within the entrapment and nitritation kinetics of entrapped nitrifiers.  相似文献   

11.
The vegetable sponge of Luffa cylindrica was studied as a matrix for the immobilization of hyphal fungi, yeast and bacteria. All were observed to be entrapped within the sponge. When the various immobilized systems were subcultured in their respective fresh nutrient media, the hyphal fungi showed an increase in biomass with no cellular release and secondary colony formation. The immobilized yeast and bacteria released cells into the medium. Advantages of the reticulated biostructure as an immobilization matrix are discussed.  相似文献   

12.
细菌生物被膜(biofilm)附着在生物或者非生物表面,由细菌及其分泌的糖、蛋白质和核酸等多种基质组成的细菌群落,是造成病原细菌持续性感染、毒力和耐药性的重要原因之一.细菌的生物被膜基质由复杂的胞外聚合物(extracellular polymeric substances,EPS)构成,影响生物被膜的结构和功能.本文...  相似文献   

13.
Established (48- and 72-h) Salmonella enteritidis biofilms grown in glass flow cells with or without artificial crevices (0.5-, 0.3-, and 0.15-mm widths) were subjected to a 10% trisodium phosphate (TSP) solution under different flow regimens (0.3, 0.6, 1.2, and 1.8 cm s-1). The abundance of biofilm remaining after TSP treatment, the biocidal efficacy of TSP, and the factors which contributed to bacterial survival were then evaluated by using confocal laser microscopy and a fluorescent viability probe. Biofilm age affected the amount of biofilm which remained following a 15-s exposure to TSP. After TSP treatment of 48-h biofilms, 29% of the original biofilm remained at the biofilm-liquid interface, whereas 75% of the biofilm remained at the base (the attachment surface). Following TSP treatment of 72-h biofilms, 27% of the biofilm material remained at the biofilm-liquid interface, 73% remained at the 5-micron depth, and 91% remained at the biofilm base. Results obtained using the BacLight viability probe indicated that TSP exposure killed all the cells in 48-h biofilms, whereas in the thicker 72-h biofilms, surviving bacteria (approximately 2% of the total) were found near the 5- and 0-micron depths. In the presence of artificially constructed crevices, an inverse relationship was shown to exist between bacterial survival (ranging from approximately 13 to 83% of total biofilm material) and crevice width. This relationship was further influenced by the velocity of TSP flow; high TSP flow velocities (1.8 cm s-1) resulted in the lowest number of surviving bacteria at the base of crevices (approximately 42% survival). Extended time courses demonstrated that after TSP stress was relieved, biofilms continued to grow within crevices but not in systems without crevices. It is suggested that advective TSP flux into crevices and through the biofilm matrix was enhanced under conditions of high flow. These results suggest that the inherent roughness of the substratum on which the biofilm was grown and the timing of TSP application are important factors controlling the efficacy of TSP treatment.  相似文献   

14.
Bacterial Fouling in a Model Core System   总被引:12,自引:10,他引:2       下载免费PDF全文
We have used a sintered glass bead core to simulate the spaces and surfaces of reservoir rock in studies of the bacterial plugging phenomenon that affects waterflood oil recovery operations. The passage of pure or mixed natural populations of bacteria through this solid matrix was initially seen to promote the formation of adherent bacterial microcolonies on available surfaces. Bacteria within these microcolonies produced huge amounts of exopolysaccharides and coalesced to form a confluent plugging biofilm that eventually caused a >99% decrease in core permeability. Aerobic bacteria developed a plugging biofilm on the inlet face of the core, facultative anaerobes plugged throughout the core, and dead bacteria did not effectively plug the narrow (33-μm) spaces of this solid matrix because they neither adhered extensively to surfaces nor produced the extensive exopolysaccharides characteristic of living cells. The presence of particles in the water used in these experiments rapidly decreased the core permeability because they became trapped in the developing biofilm and accelerated the plugging of pore spaces. Once established, cells within the bacterial biofilm could be killed by treatment with a biocide (isothiazalone), but their essentially inert carbohydrate biofilm matrix persisted and continued to plug the pore spaces, whereas treatment with 5% sodium hypochlorite killed the bacteria, dissolved the exopolysaccharide biofilm matrix, and restored permeability to these plugged glass bead cores.  相似文献   

15.
Scanning transmission X-ray microscopy (STXM) at the C 1s, O 1s, Ni 2p, Ca 2p, Mn 2p, Fe 2p, Mg 1s, Al 1s and Si 1s edges was used to study Ni sorption in a complex natural river biofilm. The 10-week grown river biofilm was exposed to 10 mg L−1 Ni2+ (as NiCl2) for 24 h. The region of the biofilm examined was dominated by filamentous structures, which were interpreted as the discarded sheaths of filamentous bacteria, as well as a sparse distribution of rod-shaped bacteria. The region also contained discrete particles with spectra similar to those of muscovite, SiO2 and CaCO3. The Ni(II) ions were selectively adsorbed by the sheaths of the filamentous bacteria. The sheaths were observed to be metal rich with significant amounts of Ca, Fe and Mn, along with the Ni. In addition, the sheaths had a large silicate content but little organic material. The metal content of the rod-shaped bacterial cells was much lower. The Fe on the sheath was mainly in the Fe(III) oxidation state. Mn was found in II, III and IV oxidation states. The Ni was likely sorbed to Mn–Fe minerals on the sheath. These STXM results have probed nano-scale biogeochemistry associated with bacterial species in a complex, natural biofilm community. They have implications for selective Ni contamination of the food chain and for developing bioremediation strategies.  相似文献   

16.
Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm.  相似文献   

17.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

18.
A fast and convenient bacterial immobilization method was proposed as an attempt to improve the anode efficiency of a microbial fuel cell, in which bacteria were entrapped into carbon nanoparticle matrix. The direct electron transfer from the entrapped bacterial cells to the anode was verified using cyclic voltammogram (CV). Using the immobilized bioanode, the start-up time of the MFC was greatly reduced. Meanwhile, the maximum power density of 1,947 mW m−2 with the modified anode was much higher than that with the biofilm-based carbon cloth anode (1,479 mW m−2). Impedance measurements suggested that performance improvement resulted from the decrease in charge transfer and diffusion resistances. The results demonstrated that bacteria immobilization using carbon nanoparticle matrix was a simple and efficient approach for improving the anodes performances in MFCs.  相似文献   

19.
In most environments, bacteria reside primarily in biofilms, which are social consortia of cells that are embedded in an extracellular matrix and undergo developmental programmes resulting in a predictable biofilm 'life cycle'. Recent research on many different bacterial species has now shown that the final stage in this life cycle includes the production and release of differentiated dispersal cells. The formation of these cells and their eventual dispersal is initiated through diverse and remarkably sophisticated mechanisms, suggesting that there are strong evolutionary pressures for dispersal from an otherwise largely sessile biofilm. The evolutionary aspect of biofilm dispersal is now being explored through the integration of molecular microbiology with eukaryotic ecological and evolutionary theory, which provides a broad conceptual framework for the diversity of specific mechanisms underlying biofilm dispersal. Here, we review recent progress in this emerging field and suggest that the merging of detailed molecular mechanisms with ecological theory will significantly advance our understanding of biofilm biology and ecology.  相似文献   

20.
Biofilms of microbial cells encased in an exopolymeric matrix can form on solid surfaces, but how bacteria sense a solid surface and upregulate biofilm genes is largely unknown. We investigated the role of the Bacillus subtilis signal peptidase, SipW, which has a unique role in forming biofilms on a solid surface and is not required at an air-liquid interface. Surprisingly, we found that the signal peptidase activity of SipW was not required for solid-surface biofilms. Furthermore, a SipW mutant protein was constructed that lacks the ability to form a solid-surface biofilm but still retains signal peptidase activity. Through genetic and gene expression tests, the non-signal peptidase role of SipW was found to activate biofilm matrix genes specifically when cells were on a solid surface. These data provide the first evidence that a signal peptidase is bifunctional and that SipW has a regulatory role in addition to its role as a signal peptidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号