首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kretulskie AM  Spratt TE 《Biochemistry》2006,45(11):3740-3746
The mechanism by which purine-purine mispairs are formed and extended was examined with the high-fidelity Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease activity inactivated. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. A decrease in rate associated with a 7-deazapurine substitution would suggest that the nucleotide is in a syn conformation in a Hoogsteen base pair with the opposite base. During mispair formation, the k(pol)/K(d) values for the insertion of dATP opposite A (dATP/A) as well as dATP/G and dGTP/G were decreased greater than 10-fold with the deazapurine in the dNTP. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the syn conformation and the template base in the anti conformation. During mispair extension, the only decrease in k(pol)/K(d) was associated with the G/G base pair in which 7-deazaguanine was in the template strand. These results as well as previous results [McCain et al. (2005) Biochemistry 44, 5647-5659] in which a hydrogen bond was found between the 3-position of guanine at the primer terminus and Arg668 during G/A and G/G mispair extension indicate that the conformation of the purine at the primer terminus is in the anti conformation during mispair extension. These results suggest that purine-purine mispairs are formed via a Hoogsteen geometry in which the dNTP is in the syn conformation and the template is in the anti conformation. During extension, however, the conformation of the primer terminus changes to an anti configuration while the template base may be in either the syn or anti conformations.  相似文献   

2.
Y-family (lesion-bypass) DNA polymerases show the same overall structural features seen in other members of the polymerase superfamily, yet their active sites are more open, with fewer contacts to the DNA and nucleotide substrates. This raises the question of whether analogous active-site side chains play equivalent roles in the bypass polymerases and their classical DNA polymerase counterparts. In Klenow fragment, an A-family DNA polymerase, the steric gate side chain (Glu710) not only prevents ribonucleotide incorporation but also plays an important role in discrimination against purine-pyrimidine mispairs. In this work we show that the steric gate (Phe12) of the Y-family polymerase Dbh plays a very minor role in fidelity, despite its analogous role in sugar selection. Using ribonucleotide discrimination to report on the positioning of a mispaired dNTP, we found that the pyrimidine of a Pu-dPyTP nascent mispair occupies a similar position to that of a correctly paired dNTP in the Dbh active site, whereas in Klenow fragment the mispaired dNTP sits higher in the active site pocket. If purine-pyrimidine mispairs adopt the expected wobble geometry, the difference between the two polymerases can be attributed to the binding of the templating base, with the looser binding site of Dbh permitting a variety of template conformations with only minimal adjustment at the incoming dNTP. In Klenow fragment the templating base is more rigidly held, so that changes in base pair geometry would affect the dNTP position, allowing the Glu710 side chain to serve as a sensor of nascent mispairs.  相似文献   

3.
The hydrogen bonding interactions between the Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease inactivated (KF(-)) and the minor groove of DNA were examined with modified oligodeoxynucleotides in which 3-deazaguanine (3DG) replaced guanine. This substitution would prevent a hydrogen bond from forming between the polymerase and that one site on the DNA. If the hydrogen bonding interaction were important, then we should observe a decrease in the rate of reaction. The steady-state and pre-steady-state kinetics of DNA replication were measured with 10 different oligodeoxynucleotide duplexes in which 3DG was placed at different positions. The largest decrease in the rate of replication was observed when 3DG replaced guanine at the 3'-terminus of the primer. The effect of this substitution on mispair extension and formation was then probed. The G to 3DG substitution at the primer terminus decreased the k(pol) for the extension past G/C, G/A, and G/G base pairs but not the G/T base pair. The G to 3DG substitution at the primer terminus also decreased the formation of correct base pairs as well as incorrect base pairs. However, in all but two mispairs, the effect on correct base pairs was much greater than that of mispairs. These results indicate that the hydrogen bond between Arg668 and the minor groove of the primer terminus is important in the fidelity of both formation and extension of mispairs. These experiments support a mechanism in which Arg668 forms a hydrogen bonding fork between the minor groove of the primer terminus and the ring oxygen of the deoxyribose moiety of the incoming dNTP to align the 3'-hydroxyl group with the alpha-phosphate of the dNTP. This is one mechanism by which the polymerase can use the geometry of the base pairs to modulate the rate of formation and extension of mispairs.  相似文献   

4.
The ability or inability of a DNA polymerase to extend a mispair directly affects the establishment of genomic mutations. We report here kinetic analyses of the ability of Dpo4, a Y-family polymerase from Sulfolobus solfataricus, to extend from all mispairs opposite a template G or T. Dpo4 is equally inefficient at extending these mispairs, which include, surprisingly, a G.T mispair expected to conform closely to Watson-Crick geometry. To elucidate the basis of this, we solved the structure of Dpo4 bound to G.T-mispaired primer template in the presence of an incoming nucleotide. As a control, we also determined the structure of Dpo4 bound to a matched A-T base pair at the primer terminus. The structures offer a basis for the low efficiency of Dpo4 in extending a G.T mispair: a reverse wobble that deflects the primer 3'-OH away from the incoming nucleotide.  相似文献   

5.
Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.  相似文献   

6.
Structures of DNA polymerase (pol) beta bound to single-nucleotide gapped DNA had revealed that the lyase and pol domains form a "doughnut-shaped" structure altering the dNTP binding pocket in a fashion that is not observed when bound to non-gapped DNA. We have investigated dNTP binding to pol beta-DNA complexes employing steady-state and pre-steady-state kinetics. Although pol beta has a kinetic scheme similar to other DNA polymerases, polymerization by pol beta is limited by at least two partially rate-limiting steps: a conformational change after dNTP ground-state binding and product release. The equilibrium binding constant, K(d)((dNTP)), decreased and the insertion efficiency increased with a one-nucleotide gapped DNA substrate, as compared with non-gapped DNA. Valine substitution for Asp(276), which interacts with the base of the incoming nucleotide, increased the binding affinity for the incoming nucleotide indicating that the negative charge contributed by Asp(276) weakens binding and that an interaction between residue 276 with the incoming nucleotide occurs during ground-state binding. Since the interaction between Asp(276) and the nascent base pair is observed only in the "closed" conformation of pol beta, the increased free energy in ground-state binding for the mutant suggests that the subsequent rate-limiting conformational change is not the "open" to "closed" structural transition, but instead is triggered in the closed pol conformation.  相似文献   

7.
Arora K  Beard WA  Wilson SH  Schlick T 《Biochemistry》2005,44(40):13328-13341
Molecular dynamics simulations of DNA polymerase (pol) beta complexed with different incorrect incoming nucleotides (G x G, G x T, and T x T template base x incoming nucleotide combinations) at the template-primer terminus are analyzed to delineate structure-function relationships for aberrant base pairs in a polymerase active site. Comparisons, made to pol beta structure and motions in the presence of a correct base pair, are designed to gain atomically detailed insights into the process of nucleotide selection and discrimination. In the presence of an incorrect incoming nucleotide, alpha-helix N of the thumb subdomain believed to be required for pol beta's catalytic cycling moves toward the open conformation rather than the closed conformation as observed for the correct base pair (G x C) before the chemical reaction. Correspondingly, active-site residues in the microenvironment of the incoming base are in intermediate conformations for non-Watson-Crick pairs. The incorrect incoming nucleotide and the corresponding template residue assume distorted conformations and do not form Watson-Crick bonds. Furthermore, the coordination number and the arrangement of ligands observed around the catalytic and nucleotide binding magnesium ions are mismatch specific. Significantly, the crucial nucleotidyl transferase reaction distance (P(alpha)-O3') for the mismatches between the incoming nucleotide and the primer terminus is not ideally compatible with the chemical reaction of primer extension that follows these conformational changes. Moreover, the extent of active-site distortion can be related to experimentally determined rates of nucleotide misincorporation and to the overall energy barrier associated with polymerase activity. Together, our studies provide structure-function insights into the DNA polymerase-induced constraints (i.e., alpha-helix N conformation, DNA base pair bonding, conformation of protein residues in the vicinity of dNTP, and magnesium ions coordination) during nucleotide discrimination and pol beta-nucleotide interactions specific to each mispair and how they may regulate fidelity. They also lend further support to our recent hypothesis that additional conformational energy barriers are involved following nucleotide binding but prior to the chemical reaction.  相似文献   

8.
In order to study the structural principles governing DNA polymerase fidelity we have measured the rates of insertion of incorrect nucleotides and the rates of extension from the resulting mismatched base pairs, catalyzed by the Klenow fragment of DNA polymerase I. Using a combination of semi-quantitative and qualitative approaches, we have studied each of the 12 possible mismatches in a variety of sequence contexts. The results indicate that Klenow fragment discriminates between mismatches largely on the basis of the identity of the mismatch, with the surrounding sequence context playing a significant, but secondary, role. For purine-pyrimidine and pyrimidine-pyrimidine mispairs, the relative ease of mismatch synthesis and extension can be rationalized using a simple geometrical model, with the important criterion being the extent to which the mismatched base pair can conform to normal DNA geometry. Essentially similar conclusions have been reached in studies of other polymerases, suggesting that this aspect of mispair geometry is sensed and responded to in a similar way by all polymerases. Purine-purine mismatches form a less cohesive class, showing more variable behavior from mispair to mispair, and a greater apparent susceptibility to sequence context effects. Comparison of our data with studies of other polymerases also suggests that different polymerases respond to purine-purine mismatches in distinct and characteristic ways. An extensive analysis of each of the four purine-purine mispairs in approximately 100 different sequence contexts suggests that the reaction is influenced both by the local DNA structure and by the ability of the mismatched terminus to undergo slippage.  相似文献   

9.
10.
The base substitution fidelity of DNA polymerase-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) has been determined in vitro, for all 12 possible mispairs at 96 sites in a forward mutational target. Averaging all errors over all known detectable sites, pol-gamma is the most accurate enzyme, producing one error for every 10,000 bases polymerized. Pol-beta is much less accurate, with an error rate of 1/1,500, while pol-alpha has an intermediate accuracy of 1/4,000. The relative differences in fidelity between the DNA polymerases are strongly influenced by the nature of the mispair. For example, G(template):dATP mispairs and G:dGTP mispairs are formed with about equal frequency by all three classes of DNA polymerases, yet pol-gamma produces T:dGTP mispairs at a 100-fold lower frequency than does pol-beta. The DNA polymerases exhibit distinct differences in template site preferences as well as substrate insertion preferences. The increase in accuracy apparent in proceeding from the least selective to the most accurate enzyme results primarily from a decrease in mispair formations at template A and T residues and a decrease in misinsertion of pyrimidine deoxynucleotides. These data clearly demonstrate a major role for eucaryotic DNA polymerases in modulating base mispair frequencies at the level of insertion. In addition to direct mispair formation due to an incorrect incorporation event, an examination of the errors produced by each of the three classes of DNA polymerases at two particular sites in the target sequence suggests that some base substitution errors result from transient misalignment of the primer-template. A model is presented to explain this phenomenon, termed "Dislocation Mutagenesis." The data are discussed in relation to the extensive literature on base substitution errors and to the origin of spontaneous base substitutions in animal cells.  相似文献   

11.
Kraynov VS  Showalter AK  Liu J  Zhong X  Tsai MD 《Biochemistry》2000,39(51):16008-16015
The specific catalytic roles of two groups of DNA polymerase beta active site residues identified from crystal structures were investigated: residues possibly involved in DNA template positioning (Lys280, Asn294, and Glu295) and residues possibly involved in binding the triphosphate moiety of the incoming dNTP (Arg149, Ser180, Arg183, and Ser188). Eight site-specific mutants were constructed: K280A, N294A, N294Q, E295A, R149A, S180A, R183A, and S188A. Two-dimensional NMR analysis was employed to show that the global conformation of the mutants has not been perturbed significantly. Pre-steady-state kinetic analyses with single-nucleotide gapped DNA substrates were then performed to obtain the rate of catalysis at saturating dNTP (k(pol)), the apparent dissociation constant for dNTP (K(d)), catalytic efficiency k(pol)/K(d), and fidelity. Of the three template-positioning residues, Asn294 and Glu295 (but not Lys280) contribute significantly to k(pol). Taken together with other data, the results suggest that these two residues help to stabilize the transition state during catalysis even though they interact with the DNA template backbone rather than directly with the incoming dNTP or the opposite base on the template. Furthermore, the fidelity increases by up to 19-fold for N294Q due to differential k(pol) effects between correct and incorrect nucleotides. Of the four potential triphosphate-binding residues, Ser180 and Arg183 contribute significantly to k(pol) while the effects of R149A are relatively small and are primarily on K(d), and Ser188 appears to play a minimal role in the catalysis by Pol beta. These results identify several residues important for catalysis and quantitate the contributions of each of those residues. The functional data are discussed in relation to the prediction on the basis of available crystal structures.  相似文献   

12.
Substrate-induced conformational change of the protein is the linchpin of enzymatic reactions. Replicative DNA polymerases, for example, convert from an open to a closed conformation in response to dNTP binding. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, differs strikingly from other polymerases in its much higher proficiency and fidelity for nucleotide incorporation opposite template purines than opposite template pyrimidines. We present here a crystallographic analysis of hPoliota binary complexes, which together with the ternary complexes show that, contrary to replicative DNA polymerases, the DNA, and not the polymerase, undergoes the primary substrate-induced conformational change. The incoming dNTP "pushes" templates A and G from the anti to the syn conformation dictated by a rigid hPoliota active site. Together, the structures posit a mechanism for template selection wherein dNTP binding induces a conformational switch in template purines for productive Hoogsteen base pairing.  相似文献   

13.
DeLucia AM  Grindley ND  Joyce CM 《Biochemistry》2007,46(38):10790-10803
Y-family polymerases are specialized to carry out DNA synthesis past sites of DNA damage. Their active sites make fewer contacts to their substrates, consistent with the remarkably low fidelity of these DNA polymerases when copying undamaged DNA. We have used DNA containing the fluorescent reporter 2-aminopurine (2-AP) to study the reaction pathway of the Y-family polymerase Dbh. We detected 3 rapid noncovalent steps between binding of a correctly paired dNTP and the rate-limiting step for dNTP incorporation. These early steps resemble those seen with high-fidelity DNA polymerases, such as Klenow fragment, and include a step that may be related to the unstacking of the 5' neighbor of the templating base that is seen in polymerase ternary complex crystal structures. A significant difference between Dbh and high-fidelity polymerases is that Dbh generates no fluorescence changes subsequent to dNTP binding if the primer lacks a 3'OH, suggesting that the looser active site of Y-family polymerases may enforce reliance on the correct substrate structure in order to assemble the catalytic center. Dbh, like other bypass polymerases of the DinB subgroup, generates single-base deletion errors at an extremely high frequency by skipping over a template base that is part of a repetitive sequence. Using 2-AP as a reporter to study the base-skipping process, we determined that Dbh uses a mechanism in which the templating base slips back to pair with the primer terminus while the base that was originally paired with the primer terminus becomes unpaired.  相似文献   

14.
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.  相似文献   

15.
DNA polymerases insert a dNTP by a multistep mechanism that involves a conformational rearrangement from an open to a closed ternary complex, a process that positions the incoming dNTP in the proper orientation for phosphodiester bond formation. In this work, the importance and relative contribution of hydrogen-bonding interactions and the geometric shape of the base pair that forms during this process were studied using Escherichia coli DNA polymerase I (Klenow fragment, 3'-exonuclease deficient) and natural dNTPs or non-hydrogen-bonding dNTP analogues. Both the geometric fit of the incoming nucleotide and its ability to form Watson-Crick hydrogen bonds with the template were found to contribute to the stability of the closed ternary complex. Although the formation of a closed complex in the presence of a non-hydrogen-bonding nucleotide analogue could be detected by limited proteolysis analysis, a comparison of the stabilities of the ternary complexes indicated that hydrogen-bonding interactions between the incoming dNTP and the template increase the stability of the complex by 6-20-fold. Any deviation from the Watson-Crick base pair geometry was shown to have a destabilizing effect on the closed complex. This degree of destabilization varied from 3- to 730-fold and was found to be correlated with the size of the mismatched base pair. Finally, a stable closed complex is not formed in the presence of a ddNTP or rNTP. These results are discussed in relation to the steric exclusion model for the nucleotide insertion.  相似文献   

16.
The ability of DNA polymerases to differentiate between ribonucleotides and deoxribonucleotides is fundamental to the accurate replication and maintenance of an organism's genome. The active sites of Y-family DNA polymerases are highly solvent accessible, yet these enzymes still maintain a high selectivity towards deoxyribonucleotides. Here, we biochemically demonstrate that a single active-site mutation (Y12A) in Dpo4, a model Y-family DNA polymerase, causes both a dramatic loss of ribonucleotide discrimination and a decrease in nucleotide incorporation efficiency. We also determined two ternary crystal structures of the Dpo4 Y12A mutant incorporating either dATP or ATP nucleotides opposite a template dT base. Interestingly, both dATP and ATP were hydrolyzed to dADP and ADP, respectively. In addition, the dADP and ADP molecules adopt a similar conformation and position at the polymerase active site to a ddADP molecule in the ternary crystal structure of wild-type Dpo4. The Y12A mutant loses stacking interactions with the deoxyribose of dNTP, which destabilizes the binding of incoming nucleotides. The mutation also opens a space to accommodate the 2′-OH group of the ribose of NTP in the polymerase active site. The structural change leads to the reduction in deoxynucleotide incorporation efficiency and allows ribonucleotide incorporation.  相似文献   

17.
We have utilized an electrophoretic assay of misincorporation to investigate the possibility that ionization of 5-bromouracil (BU) may play a role in its mispairing during DNA synthesis in vitro. We examined the effects of increasing pH on the relative rates of formation of BU.G and T.G mispairs during chain elongation catalyzed by various DNA polymerases. For the Klenow fragment of Escherichia coli DNA polymerase I, increasing pH facilitated BU.G mispair formation (relative to T.G mispairing) when BU was present in the template strand. This effect showed a strong dependence on sequence context. Increasing pH had little effect on the relative rate of misincorporation of BrdUMP versus dTMP (at template G) by the Klenow polymerase. Misincorporation opposite template BU residues catalyzed by Maloney murine leukemia virus DNA polymerase and DNA polymerase beta (Novikoff hepatoma) also increased with pH, but for these two enzymes, there was no apparent dependence on sequence context. With T4 DNA polymerase and E. coli DNA polymerase III holoenzyme, a similar occurrence of BU.G and T.G mispairing during polymerization was observed, whether BU was present in the template or in the incoming nucleotide, and there was little effect of pH. The results reported here are consistent with a mispairing mechanism for template BU wherein the anionic form of the base mispairs with G.  相似文献   

18.
Hamid S  Eckert KA 《Biochemistry》2005,44(30):10378-10387
We have examined the mechanism of DNA polymerase beta (pol beta) lesion discrimination using alkylated dNTP versus alkylated DNA template substrates and the pol beta variants R253M and E249K. Both of these amino acid variants are located in the loop region of the palm domain and are known to play a role in pol beta fidelity and discrimination of 3'-azido-3'-deoxythymidine triphosphate substrates. We observed that these variants affect O(6)-methyldeoxyguanosine- (m6G-) modified dNTP discrimination without affecting m6G template translesion synthesis. Under steady-state conditions, the ratio of inherent reactivity values for the m6dGTP substrate relative to the dGTP substrate was greater for both variant polymerases than for wild-type (WT) pol beta. Biochemical assays of translesion synthesis using m6G lesion-containing templates demonstrated no significant differences between the variants and WT. Using N-methyl-N-nitrosourea- (MNU-) modified DNA templates in the HSV-tk in vitro assay, no difference among the enzymes in the frequency of alkylation-induced G to A transition mutations was observed. However, differences among the polymerases in the frequency of alkylation-induced C to A transversions were observed, consistent with a mutator tendency for E249K and an antimutator tendency for R253M. We conclude that a specific interaction at the loop of the palm domain is involved in pol beta discrimination of the m6G lesion when present on the incoming dNTP substrate but not when present in the DNA template. Our data support a role for the flexible loop in pol beta error discrimination.  相似文献   

19.
DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.  相似文献   

20.
Theoretical conformational analysis using classical potential functions has shown the possibility of incorporation of nucleotide mispairs with the bases in normal tautomeric forms into the DNA double helix. Incorrect purine-pyrimidine, purine-purine and pyrimidine-pyrimidine pairs can be incorporated into the double helix existing both in A- and B-conformations. The most energy favourable conformations of fragments containing a mispair have all the dihedral angles of the sugar-phosphate backbone within the limits characteristic of double helices consisting of Watson-Crick nucleotide pairs. Incorporation of mispairs is possible practically without the appearance of reduced interatomic contacts. Mutual position of bases in the incorporated mispair does not differ much from their position at the energy minimum of the corresponding isolated base pairs. Conformational parameters of irregular regions of double-stranded polynucleotides containing G:U, I:A, I:A* (syn) and U:C pairs are presented. Distortion of the sugar-phosphate backbone is the least upon incorporation of the G:U pair. Formation of mispairs in the processes of nucleic acid biosynthesis and spontaneous mutagenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号