首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Serum depletion induces cell death. Whereas serum contains growth factors and adhesion molecules that are important for survival, serum is also likely to have antiapoptotic factor(s). We show here that the plasma proteinase inhibitors alpha1-proteinase inhibitor, alpha1-antichymotrypsin, and alpha2-macroglobulin function as critical antiapoptotic factors for human vascular smooth muscle cells. Cell survival was assured when serum-free medium was supplemented with any one or all of the above serine proteinase inhibitors. In contrast, the cells were sensitive to apoptosis when cultured in medium containing serum from which the proteinase inhibitors were removed. The antiapoptotic effect conferred by the proteinase inhibitors was proportional to proteinase inhibitory activity. Without proteinase inhibitors, the extracellular matrix was degraded, and cells could not attach to the matrix. Cell survival was dependent on the intact extracellular matrix. In the presence of the caspase inhibitor z-VAD, the cells detached but did not die. The activity of caspases was elevated without proteinase inhibitors; in contrast, caspases were not activated when medium was supplemented with one of the proteinase inhibitors. In conclusion, the plasma proteinase inhibitors prevent degradation of extracellular matrix by proteinases derived from cells. Presumably an intact cell-matrix interaction inhibits caspase activation and supports cell survival.  相似文献   

2.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

3.
Mononuclear phagocytes are a bone-marrow-derived subgroup of white blood cells which circulate as monocytes and, after differentiation into macrophages, become resident in many tissues. By synthesizing the important proteinase inhibitors alpha 2-macroglobulin and alpha 1-proteinase inhibitor mononuclear phagocytes contribute to the control of proteolysis both in blood and tissues. Applying a culture system which enables human blood monocytes to differentiate into macrophages in vitro, synthesis of alpha 2-macroglobulin and alpha 1-proteinase inhibitor was studied. The normal course of monocyte-macrophage maturation is accompanied by a strong increase of specific alpha 2-macroglobulin synthesis and a concomitant slight decrease of alpha 1-proteinase inhibitor. alpha 2-Macroglobulin can be designated as a marker protein of the monocyte/macrophage differentiation. Endotoxin (Salmonella typhi) in a concentration as low as 100 ng/ml strongly represses alpha 2-macroglobulin synthesis both in monocytes and macrophages. Furthermore, endotoxin completely abolishes the induction of alpha 2-macroglobulin synthesis during the course of normal monocyte in vitro cultivation, indicating that endotoxin is a strong inhibitor of the monocyte-macrophage maturation. In contrast to alpha 2-macroglobulin, alpha 1-proteinase inhibitor synthesis is strongly stimulated by endotoxin in monocytes as well as in macrophages.  相似文献   

4.
The in vitro activity of inflammatory proteinase, medullasin, was stoichiometrically inhibited by a serum proteinase inhibitor, alpha 2-macroglobulin, and its homolog, chicken ovomacroglobulin. The two inhibitors were cleaved by medullasin only in the bait region. The effectiveness of alpha 2-macroglobulin to inhibit medullasin in competition with alpha -1-proteinase inhibitor was measured under a simulated in vivo condition and an estimation was made that about 60-70% medullasin is inhibited by alpha-1-inhibitor and 30-40% by alpha 2-macroglobulin.  相似文献   

5.
Association rates have been determined for the interaction of human alpha 2-macroglobulin with human neutrophil elastase, cathepsin G, and human plasma kallikrein. Both of the neutrophil enzymes are rapidly inactivated by this inhibitor; however, the inactivation of plasma kallikrein is much slower. Comparison of the rates of inactivation with those already established for other inhibitors clearly indicate that alpha 1-proteinase inhibitor is the controlling inhibitor for neutrophil elastase and alpha 1-antichymotrypsin for cathepsin G, alpha 2-macroglobulin acting only as a secondary inhibitor. The control of plasma kallikrein would appear to be rather poor since neither alpha 2-macroglobulin nor C1-inhibitor appears to react very rapidly with this proteinase. Thus, a primary role for alpha 2-macroglobulin in directly inactivating proteinases in blood, under normal physiological conditions, remains to be established.  相似文献   

6.
At pH 8.0 and 25 degrees C alpha 1-proteinase inhibitor and alpha 2-macroglobulin bind human pancreatic elastase with rate constants of 4.7.10(5) M-1.s-1 and 6.4.10(6) M-1.s-1, respectively. The corresponding delay times of elastase inhibition in plasma are 0.4 s and 0.2 s, respectively, indicating that both inhibitors may act as physiological antielastases. Elastin impairs the elastase inhibitory capacity of alpha 1-proteinase inhibitor and alpha 2-macroglobulin. In presence of human elastin, the former behaves like a slow-binding elastase inhibitor, with a rate constant of about 260 M-1.s-1. In contrast, alpha 2-macroglobulin is a fast-binding inhibitor of elastin-bound elastase, but only one of its two sites is functioning in presence of elastin.  相似文献   

7.
The integrin alpha 8 subunit, isolated by low stringency hybridization, is a novel integrin subunit that associates with beta 1. To identify ligands, we have prepared a function-blocking antiserum to the extracellular domain of alpha 8, and we have established by transfection K562 cell lines that stably express alpha 8 beta 1 heterodimers on the cell surface. We demonstrate here by cell adhesion and neurite outgrowth assays that alpha 8 beta 1 is a fibronectin receptor. Studies on fibronectin fragments using RGD peptides as inhibitors show that alpha 8 beta 1 binds to the RGD site of fibronectin. In contrast to the endogenous alpha 5 beta 1 fibronectin receptor in K562 cells, alpha 8 beta 1 not only promotes cell attachment but also extensive cell spreading, suggesting functional differences between the two receptors. In chick embryo fibroblasts, alpha 8 beta 1 is localized to focal adhesions. We conclude that alpha 8 beta 1 is a receptor for fibronectin and can promote attachment, cell spreading, and neurite outgrowth on fibronectin.  相似文献   

8.
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin alpha(5)beta(1). Further, we show that FN-fibrin clots support increased cell spreading when compared with fibrin matrices. To determine the structural requirements for FN in this process, recombinant FN monomers deficient in ligand binding or fibrin cross-linking were incorporated into fibrin clots. We show that recombinant FN monomers support clot retraction by Chinese hamster ovary cells expressing the integrin alpha(5)beta(1). This process depends on both the Arg-Gly-Asp (RGD) and the synergy cell-binding sites and on covalent FN-fibrin binding, demonstrating that cross-linking within the clot is important for cell-FN interactions. These data show that alpha(5)beta(1) can bind to FN within a clot to promote clot retraction and support cell shape change. This provides strong evidence that alpha(5)beta(1)-FN interactions may contribute to the cellular events required for wound contraction.  相似文献   

9.
The objective of this study was to investigate the uterine uptake of plasma alpha 1-proteinase inhibitor (53,000 Da) and alpha 2-macroglobulin (725,000 Da) from the blood during implantation in the mouse using isotopic methods. The uterine uptake of albumin (67,000 Da) and immunoglobulin G (150,000 Da) were also measured for comparison. Rates of uptake were assessed from permeability-surface area products estimated from the rate at which the tissue volume of distribution approaches its steady-state value. The permeability-surface area product estimates at implantation sites were 13.3 and 54.8 ml/100 g.h for alpha 2-macroglobulin and alpha 1-proteinase inhibitor, respectively. Given the circulating levels of these proteins in mice, these results demonstrate that considerable amounts of plasma proteinase inhibitors are extravasated into the interstitium in the vicinity of the implanting blastocyst. The permeability-surface area products of all the proteins studied, except immunoglobulin G, were greater at implantation compared to non-implantation sites, confirming greater vascular permeability to plasma proteins at implantation sites compared to non-implantation sites. Estimates of the permeability-surface area products of the studied proteins showed that the uterine vasculature was generally more permeable to proteins with a small than with a large molecular size. Nevertheless, the ratio of the permeability-surface area product between implantation and non-implantation sites for the proteins ranged from 1.1 to 2.9 with no obvious relationship to molecular size.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

11.
Purification of nine plasma proteinase inhibitors and one zymogen from a single batch of human plasma, using affinity chromatography has been accomplished. Those isolated were plasminogen (lysine-Sepharose), alpha-2-antiplasmin (plasminogen-Sepharose), high and low molecular weight kininogens (CM-papain-Sepharose), alpha-2-macroglobulin (Zn++ chelate-Sepharose), alpha-1-proteinase inhibitor, alpha-1-antichymotrypsin, Cl-inhibitor, inter-alpha-trypsin inhibitor (Blue-Sepharose) and antithrombin III (heparin-Sepharose). Alpha-2-macroglobulin and alpha-1-proteinase inhibitor required gel filtration as additional purification steps. Each protein was recovered in both high yield and purity.  相似文献   

12.
The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (sIgA), IgG, and IgM. It also degraded interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Its activity was not inhibited by endogenous protease inhibitors, such as alpha 2-macroglobulin, alpha 1-trypsin inhibitor, and alpha 2-antiplasmin. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthamoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.  相似文献   

13.
The plasma clearance of neutrophil elastase, plasmin, and their complexes with human inter-alpha-trypsin inhibitor (I alpha I) was examined in mice, and the distribution of the proteinases among the plasma proteinase inhibitors was quantified in mixtures of purified inhibitors, in human or murine plasma, and in murine plasma following injection of purified proteins. The results demonstrate that I alpha I acts as a shuttle by transferring proteinases to other plasma proteinase inhibitors for clearance, and that I alpha I modulates the distribution of proteinase among inhibitors. The clearance of I alpha I-elastase involved transfer of proteinase to alpha 2-macroglobulin and alpha 1-proteinase inhibitor. The partition of elastase between these inhibitors was altered by I alpha I to favor formation of alpha 2-macroglobulin-elastase complexes. The clearance of I alpha I-plasmin involved transfer of plasmin to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Results of distribution studies suggest that plasmin binds to endothelium in vivo and reacts with I alpha I before transfer to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Evidence for this sequence of events includes observations that plasmin in complex with I alpha I cleared faster than free plasmin, that plasma obtained after injection of plasmin contained a complex identified as I alpha I-plasmin, and that a murine I alpha I-plasmin complex remained intact following injection into mice. Plasmin initially in complex with I alpha I more readily associated with alpha 2-plasmin inhibitor than did free plasmin.  相似文献   

14.
In vivo clearance studies have indicated that the clearance of proteinase complexes of the homologous serine proteinase inhibitors alpha 1-proteinase inhibitor and antithrombin III occurs via a specific and saturable pathway located on hepatocytes. In vitro hepatocyte-uptake studies with antithrombin III-proteinase complexes confirmed the hepatocyte uptake and degradation of these complexes, and demonstrated the formation of a disulfide interchange product between the ligand and a cellular protein. We now report the results of in vitro hepatocyte uptake studies with alpha 1-proteinase inhibitor-trypsin complexes. Trypsin complexes of alpha 1-proteinase inhibitor were prepared and purified to homogeneity. Uptake of these complexes by hepatocytes was time and concentration-dependent. Competition experiments with alpha 1-proteinase inhibitor, alpha 1-proteinase inhibitor-trypsin, and antithrombin III-thrombin indicated that the proteinase complexes of these two inhibitors are recognized by the same uptake mechanism, whereas the native inhibitor is not. Uptake studies were performed at 37 degrees C with 125I-alpha 1-proteinase inhibitor-trypsin and analyzed by sodium dodecyl sulfate-gel electrophoresis in conjunction with autoradiography. These studies demonstrated time-dependent uptake and degradation of the ligand to low molecular weight peptides. In addition, there was a time-dependent accumulation of a high molecular weight complex of ligand and a cellular protein. This complex disappeared when gels were performed under reducing conditions. The sole cysteine residue in alpha 1-proteinase inhibitor was reduced and alkylated with iodoacetamide. Trypsin complexes of the modified inhibitor were prepared and purified to homogeneity. Uptake and degradation studies demonstrated no differences in the results obtained with this modified complex as compared to unmodified alpha 1-proteinase inhibitor-trypsin complex. In addition, the high molecular weight disulfide interchange product was still present on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized cells. Clearance and clearance competition studies with alpha 1-proteinase inhibitor-trypsin, alkylated alpha 1-proteinase inhibitor-trypsin, antithrombin III-thrombin, and anti-thrombin III-factor IXa further demonstrated the shared hepatocyte uptake mechanism for all these complexes.  相似文献   

15.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

16.
Inhibition of six serine proteinases (bovine trypsin and chymotrypsin, equine leucocyte proteinases type 1 and 2A, porcine pancreatic elastase type III and rabbit plasmin) by rabbit alpha 1-proteinase inhibitors F and S was studied. In each case examined, the F form reacted more rapidly. The number of moles of an enzyme inhibited by one mole of alpha 1-proteinase inhibitor in a complete reaction (molar inhibitory capacity) ranged from 0.26 (leucocyte proteinase type 1) to 1.01 (trypsin). More significantly, however, the molar inhibitory capacities of both alpha 1-proteinase inhibitors differed for the same enzymes. The highest F/S inhibitory ratio was recorded with chymotrypsin (1.88), and the lowest with elastase (0.69). These differences in molar inhibitory capacities are likely to reflect the dual nature of the reaction between the inhibitor and a proteinase, that is, either complex formation or inactivation of alpha 1-proteinase inhibitor without enzyme inhibition. No evidence was obtained to suggest that differential reactivity and differential inhibitory capacity are interdependent. The observations are consistent with the view that rabbit alpha 1-proteinase inhibitors F and S are closely related yet functionally distinct proteins.  相似文献   

17.
Fibroblasts have cell surface sites that mediate assembly of plasma and cellular fibronectin into the extracellular matrix. Cell adhesion to fibronectin can be mediated by the interaction of an integrin (alpha 5 beta 1) with the Arg-Gly-Asp-Ser (RGDS)-containing cell adhesion region of fibronectin. We have attempted to elucidate the role of the alpha 5 beta 1 fibronectin receptor in assembly of fibronectin in matrices. Rat monoclonal antibody mAb 13, which recognizes the integrin beta 1 subunit, completely blocked binding and matrix assembly of 125I-fibronectin as well as binding of the 125I-70-kD amino-terminal fragment of fibronectin (70 kD) to fibroblast cell layers. Fab fragments of the anti-beta 1 antibody were also inhibitory. Antibody mAb 16, which recognizes the integrin alpha 5 subunit, partially blocked binding of 125I-fibronectin and 125I-70-kD. When cell layers were coincubated with fluoresceinated fibronectin and either anti-beta 1 or anti-alpha 5, anti-beta 1 was a more effective inhibitor than anti-alpha 5 of binding of labeled fibronectin to the cell layer. Inhibition of 125I-fibronectin binding by anti-beta 1 IgG occurred within 20 min. Inhibition of 125I-fibronectin binding by anti-beta 1 Fab fragments or IgG could not be overcome with increasing concentrations of fibronectin, suggesting that anti-beta 1 and exogenous fibronectin may not compete for the same binding site. No beta 1-containing integrin bound to immobilized 70 kD. These data indicate that the beta 1 subunit plays an important role in binding and assembly of exogenous fibronectin, perhaps by participation in the organization, regeneration, or cycling of the assembly site rather than by a direct interaction with fibronectin.  相似文献   

18.
The type III connecting segment of fibronectin contains two cell binding sites, represented by the peptides CS1 and CS5, that are recognized by the integrin receptor alpha 4 beta 1. Using assays measuring the spreading of A375-SM human melanoma cells, we now report that the adhesion promoting activity of a 29 kDa protease fragment of fibronectin containing the COOH-terminal heparin-binding domain (HepII), but lacking CS1 and CS5, is completely sensitive to anti-alpha 4 and anti-beta 1 antibodies, suggesting that HepII contains a third alpha 4 beta 1-binding sequence. Examination of the primary structure of HepII revealed a sequence with homology to CS1. A 19mer peptide spanning this region (designated H1) was found to support cell spreading to the same level as the 29 kDa fragment. H1-dependent adhesion was completely sensitive to anti-alpha 4 and anti-beta 1 antibodies. When soluble peptides were tested for their ability to block cell spreading on the 29 kDa fragment, a 13mer peptide comprising the central core of H1 was found to be completely inhibitory. The active region of H1 was localized to the pentapeptide IDAPS, which is homologous to LDVPS from the active site of CS1. Taken together, these results identify a novel peptide sequence in the HepII region of fibronectin that supports alpha 4 beta 1-dependent cell adhesion.  相似文献   

19.
Using the glyceraldehyde-3-phosphate dehydrogenase promoter, nonglycosylated human alpha 1-proteinase inhibitor, representing 10% of the soluble cell protein, has been synthesized in yeast. Two forms of this protein were isolated with one being analogous to the human plasma protein and the other having the amino acid valine replacing methionine at position 358 (the P1 position). Both proteins were more sensitive to heat inactivation than the plasma form, and both had shorter half-lives in rabbits. These differences were presumably due to the absence of carbohydrate. Each protein could bind neutrophil elastase at a rate only slightly slower than that of human plasma alpha 1-proteinase inhibitor. However, the valine variant was stable to oxidation, while the P1 methionine-containing protein was readily inactivated. The specificity of alpha 1-proteinase inhibitor (methionine) was identical to that of the plasma form; however, the valine form could only effectively bind to neutrophil or pancreatic elastase, "trypsin-like" serine proteinases not being inactivated at all. These data indicate the potential importance of mutant forms of proteinase inhibitors, produced by recombinant DNA technology, as therapeutic agents for the inactivation of excess proteinases of a specific type in tissues.  相似文献   

20.
Urokinase-activated human plasma was studied by gel electrophoresis, gel filtration, crossed immunoelectrophoresis and electroimmunoassay with specific antibodies and by assay of esterase and protease activity of isolated fractions. Urokinase induced the formation of different components with plasminogen+plasmin antigenicity. At low concentrations of urokinase, a component with a K(D) value of 0.18 by gel filtration and post beta(1) mobility by gel electrophoresis was detected. The isolated component had no enzyme or plasminogen activity. In this plasma sample fibrinogen was not degraded for 10h, but when fibrin was formed, by addition of thrombin, fibrin was quickly lysed, and simultaneously a component with a K(D) value of 0 and alpha(2) mobility appeared, which was probably plasmin in a complex with alpha(2) macroglobulin. This complex showed both esterase and protease activity. After gel filtration with lysine buffer of the clotted and lysed plasma another two components were observed with about the same K(D) value by gel filtration as plasminogen (0.35), but beta(1) and gamma mobilities by gel electrophoresis. They appeared to be modified plasminogen molecules, and possibly plasmin with gamma mobility. Similar processes occurred without fibrin at higher urokinase concentrations. Here a relatively slow degradation of fibrinogen was correlated to the appearance of the plasmin-alpha(2) macroglobulin complex. The fibrin surface appeared to catalyse the ultimate production of active plasmin with a subsequent preferential degradation of fibrin and the formation of a plasmin-alpha(2) macroglobulin complex. The gel filtration and electrophoresis of the plasma protease inhibitors, alpha(1) antitrypsin, inter-alpha-inhibitor, antithrombin III, and C(1)-esterase inhibitor indicated that any complex between plasmin and these inhibitors was completely dissociated. The beta(1) and post beta(1) components appear to lack correlates among components occurring in purified preparations of plasminogen and plasmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号