首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
One of the small proteins from Helicobacter pylori, HP1242, was investigated by the solution nuclear magnetic resonance (NMR) spectroscopy. HP1242 is known as a 76-residue conserved hypothetical protein and its function cannot be identified based on sequence homology. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the HP1242 are reported using double- and triple-resonance techniques. About 95 % of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 75 non-Proline residues of the 76 residues are clarified through sequential- and specific- assignments. In addition, three helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

2.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

3.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

4.
We have expressed [U-(13)C,(15)N]-labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11 mg/l of growth medium. Nuclear magnetic resonance (NMR) studies were conducted on the Fe(3+) form of the protein. We report herein chemical shift assignments for amide (1)H and (15)N, (13)C(omicron), (13)C(alpha), (13)C(beta), (1)H(alpha) and (1)H(beta) resonances based upon a series of three-dimensional NMR experiments: HNCA, HN(CO)CA, HNCO, HN(CA)CO, HNCACB, HCA(CO)N, HCCH-TOCSY and HBHA(CBCA)NH. An investigation of the chemical shifts of the threonine residues was also made by using density functional theory in order to help solve discrepancies between (15)N chemical shift assignments reported in this study and those reported previously.  相似文献   

5.
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.  相似文献   

6.
Y Huang  Y Zhang  Y Wu  J Wang  X Liu  L Dai  L Wang  M Yu  W Mo 《PloS one》2012,7(8):e42207
A novel recombinant hirudin, RGD-hirudin, inhibits the activity of thrombin and the aggregation of platelets. Here, we successfully expressed (15)N, (13)C-labeled RGD-hirudin in Pichia pastoris in a fermenter. The protein was subsequently purified to yield sufficient quantities for structural and functional studies. The purified protein was characterized by HPLC and MALDI-TOF mass spectroscopy. Analysis revealed that the protein was pure and uniformly labeled with (15)N and (13)C. A bioassay showed that the anti-thrombin activity and the anti-platelet aggregation ability of the labeled protein were the same as those of unlabeled RGD-hirudin. Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone (15)N, (13)C and (1)H resonance assignments of the r-RGD-Hirudin. The (15)N-(1)H HSQC spectrum of uniformly (15)N, (13)C-labeled RGD-hirudin allowed successful assignment of the signals. Examples of the quality of the data are provided for the (15)N-(l)H correlation spectrum, and by selected planes of the CBCA(CO)NH, CBCANH, and HNCO experiments. These results provide a basis for further studies on the structure-function relationship of RGD-hirudin with thrombin and platelets.  相似文献   

7.
The synthases that produce fatty acids in mammals (FASs) are arranged as large multidomain polypeptides. The growing fatty acid chain is bound covalently during chain elongation and reduction to the acyl carrier protein (ACP) domain that is then able to access each catalytic site. In this work we report the high-resolution nuclear magnetic resonance (NMR) solution structure of the isolated rat fatty acid synthase apoACP domain. The final ensemble of NMR structures and backbone (15)N relaxation studies show that apoACP adopts a single, well defined fold. On conversion to the holo form, several small chemical shift changes are observed on the ACP for residues surrounding the phosphopantetheine attachment site (as monitored by backbone (1)H-(15)N correlation experiments). However, there are negligible chemical shift changes when the holo form is modified to either the hexanoyl or palmitoyl forms. For further NMR analysis, a (13)C,(15)N-labeled hexanoyl-ACP sample was prepared and full chemical shift assignments completed. Analysis of two-dimensional F(2)-filtered and three-dimensional (13)C-edited nuclear Overhauser effect spectroscopy experiments revealed no detectable NOEs to the acyl chain. These experiments demonstrate that unlike other FAS ACPs studied, this Type I ACP does not sequester a covalently linked acyl moiety, although transient interactions cannot be ruled out. This is an important mechanistic difference between the ACPs from Type I and Type II FASs and may be significant for the modulation and regulation of these important mega-synthases.  相似文献   

8.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

9.
10.
Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH* 5.5 (2H2O) at 45 degrees C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments at spectrometer fields of 14.09 and 11.74 T: 1H-13C single-bond correlation (1H[13C]SBC); 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE); 1H-13C single-bond correlation with Hartmann-Hahn relay (1H-[13C]SBC-HH); 1H-13C multiple-bond correlation (1H[13C]MBC); 1H-15N single-bond correlation (1H-[15N]SBC); 1H-15N single-bond correlation with NOE relay (1H[15N]SBC-NOE). The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparallel beta-sheet (d alpha alpha NOE's) were observed in the 1H [13C]-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of alpha-helix (dNN NOE's) were observed in the 1H[15N]SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H[1H] 2D NMR experiments [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry (preceding paper in this issue)].  相似文献   

11.
We have performed three-dimensional NMR studies on a central component of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, denoted as HPr. The protein was uniformly enriched with 15N and 13C to overcome spectral overlap. Complete assignments were obtained for the backbone 1H, 15N and 13C resonances, using three-dimensional heteronuclear 1H NOE 1H-15N multiple-quantum coherence spectroscopy (3D-NOESY-HMQC) and three-dimensional heteronuclear total correlation 1H-15N multiple-quantum coherence spectroscopy (3D-TOCSY-HMQC) experiments on 15N-enriched HPr and an additional three-dimensional triple-resonance 1HN-15N-13C alpha correlation spectroscopy (HNCA) experiment on 13C, 15N-enriched HPr. Many of the sequential backbone 1H assignments, as derived from two-dimensional NMR studies [Klevit, R.E., Drobny, G.P. & Waygood, E.B. (1986) Biochemistry 25, 7760-7769], were corrected. Almost all discrepancies are in the helical regions, leaving the published antiparallel beta-sheet topology almost completely intact.  相似文献   

12.
1H, 13C, and 15N NMR assignments of the protein backbone of human interferon-gamma, a homodimer of 31.4 kDa, have been made using the recently introduced three-dimensional (3D) triple-resonance NMR techniques. It is shown that, despite the approximately 40-50-Hz 13C alpha and 1H alpha line widths of this high molecular weight dimer and the extensive overlap in the 1H alpha and 13C alpha spectral regions, unique sequential assignments can be made on the basis of combined use of the 3D HNCO, HNCA, HN(CO)CA, and HCACO constant-time experiments, the 15N-separated 3D NOESY-HMQC, and the 3D HOHAHA-HMQC experiments. Analysis of the 15N-separated 3D NOESY-HMQC and 13C/15N-separated four-dimensional (4D) NOESY-HMQC spectra together with the secondary C alpha and C beta chemical shifts yielded extensive secondary structure information. The NMR-derived secondary structure essentially confirms results of a recently published low-resolution crystal structure [Ealick et al. (1991) Science 252, 698-702], i.e., six helices in the monomer which are mostly alpha-helical in nature, no beta-sheets, a long flexible loop between helices A and B, and a very hydrophobic helix C. The functionally important carboxy terminus, which was not observed in the X-ray study, does not adopt a rigid conformation in solution. A high degree of internal mobility, starting at Pro-123, gives rise to significantly narrower resonance line widths for these carboxy-terminal residues compared to the rest of the protein.  相似文献   

13.
Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197].  相似文献   

14.
1H, 13C, and 15N NMR assignments of the backbone atoms and -carbons have been madefor liganded glutamine-binding protein (GlnBP) of Escherichia coli, a monomeric protein with226 amino acid residues and a molecular weight of 24,935 Da. GlnBP is a periplasmicbinding protein which plays an essential role in the active transport of L-glutamine throughthe cytoplasmic membrane. The assignments have been obtained from three-dimensionaltriple-resonance NMR experiments on a 13C,15N uniformly labeled sample as well asspecifically labeled samples. Results from the 3D triple-resonance experiments, HNCO,HN(CO)CA, HN(COCA)HA, HNCA, HN(CA)HA, HN(CA)CO, and CBCA(CO)NH, are themain sources used to make the resonance assignments. Other 3D experiments, such asHNCACB, COCAH, HCACO, HCACON, and HOHAHA-HMQC, have been used to confirmthe resonance assignments and to extend connections where resonance peaks are missing insome of the experiments mentioned above. We have assigned more than 95% of thepolypeptide backbone resonances of GlnBP. The result of the standard manual assignment isin agreement with that predicted by an automated probabilistic method developed in ourlaboratory. A solution secondary structure of the GlnBP–Gln complex has beenproposed based on chemical shift deviations from random coil values. Eight -helices and10 -strands are derived using the Chemical Shift Index method.  相似文献   

15.
Galectins are multifunctional proteins with carbohydrate/protein-binding properties and distinct expression profiles. Homodimeric galectin-7 (p53-induced gene 1) is a potent pro-apoptotic effector with clinical relevance. Here, we report (1)H, (13)C, and (15)N chemical shift assignments for human galectin-7 dimer as determined by using heteronuclear, triple resonance NMR spectroscopy.  相似文献   

16.
Summary By using fully 15N- and 15N/13C-labeled Escherichia coli dihydrofolate reductase, the sequence-specific 1H and 15N NMR assignments were achieved for 95% of the backbone resonances and for 90% of the 13C resonances in the binary folate complex. These assignments were made through a variety of three-dimensional proton-detected 15N and 13C experiments. A smaller but significant subset of side-chain 1H and 13C assignments were also determined. In this complex, only one 15N or 13C resonance was detected per 15N or 13C protein nucleus, which indicated a single conformation. Proton-detected 13C experiments were also performed with unlabeled DHFR, complexed with 13C-7/13C-9 folate to probe for multiple conformations of the substrate in its binary complex. As was found for the protein resonances, only a single bound resonance corresponding to a productive conformation could be detected for C-7. These results are consistent with an earlier report based on 1H NMR data [Falzone, C.J. et al. (1990) Biochemistry, 29, 9667–9677] and suggest that the E. coli enzyme is not involved in any catalytically unproductive binding modes in the binary complex. This feature of the E. coli enzyme seems to be unique among the bacterial forms of DHFR that have been studied to date.  相似文献   

17.
We have examined via numerical simulations the performance characteristics of different 15N RF pulse schemes employed in the transferred echo double resonance (TEDOR) experimental protocol for generating 13C-15N dipolar chemical shift correlation spectra of isotopically labelled biological systems at moderate MAS frequencies (omega(r) approximately 10 kHz). With an 15N field strength of approximately 30-35 kHz that is typically available in 5 mm triple resonance MAS NMR probes, it is shown that a robust TEDOR sequence with significant tolerance to experimental imperfections sa as H1 inhomogeneity and resonance offsets can be effectively implemented using adiabatic heteronuclear dipolar recoupling pulse schemes. TEDOR-based 15N-13C and 15N-13C-13C chemical shift correlation experiments were carried out for obtaining 13C and 15N resonance assignments of an RNA composed of 97 (CUG) repeats which has been implicated in the neuromuscular disease myotonic dystrophy.  相似文献   

18.
The ABACUS algorithm obtains the protein NMR structure from unassigned NOESY distance restraints. ABACUS works as an integrated approach that uses the complete set of available NMR experimental information in parallel and yields spin system typing, NOE spin pair identities, sequence specific resonance assignments, and protein structure, all at once. The protocol starts from unassigned molecular fragments (including single amino acid spin systems) derived from triple-resonance (1)H/(13)C/(15)N NMR experiments. Identifications of connected spin systems and NOEs precede the full sequence specific resonance assignments. The latter are obtained iteratively via Monte Carlo-Metropolis and/or probabilistic sequence selections, molecular dynamics structure computation and BACUS filtering (A. Grishaev and M. Llinás, J Biomol NMR 2004;28:1-10). ABACUS starts from scratch, without the requirement of an initial approximate structure, and improves iteratively the NOE identities in a self-consistent fashion. The procedure was run as a blind test on data recorded on mth1743, a 70-amino acid genomic protein from M. thermoautotrophicum. It converges to a structure in ca. 15 cycles of computation on a 3-GHz processor PC. The calculated structures are very similar to the ones obtained via conventional methods (1.22 A backbone RMSD). The success of ABACUS on mth1743 further validates BACUS as a NOESY identification protocol.  相似文献   

19.
Based on sequence homology, desulfothioredoxin (DTrx) from Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thioredoxin superfamily. Desulfothioredoxin (104 amino acids) contains a particular active site consensus sequence, CPHC probably correlated to the anaerobic metabolism of these bacteria. We report the full 1H, 13C and 15N resonance assignments of the reduced and the oxidized form of desulfothioredoxin (DTrx). 2D and 3D heteronuclear NMR experiments were performed using uniformly 15N-, 13C-labelled DTrx. More than 98% backbone and 96% side-chain 1H, 13C and 15N resonance assignments were obtained. (BMRB deposits with accession number 16712 and 16713).  相似文献   

20.
15N nuclear magnetic resonance (NMR) studies of the B domain (FB) of Staphylococcus protein A, which is uniformly labeled with 15N, are reported. The alpha CH(i)-15N(i) connectivity in the 1H-15N HMBC spectrum and the 13C(i-1)-15N(i) spin coupling in the 15N spectrum of a 13C-, 15N-doubly labeled FB were used to establish the assignments of the imide 15N resonances for all three Pro residues that exist in FB. Addition of human IgG caused a significant downfield shift of the Pro-39 resonance. This result is quite consistent with our previous suggestion that a significant conformation change is induced in the Ser-42-Ala-55 helical region of FB when it is bound to human IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号