首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A genetically modified version of the south Asian, zebra danio, Danio rerio, a common aquarium fish, has become the first transgenic pet sold in the USA. Mean chronic lethal maxima of wildtype (39.8 °C, n=16n=16) and transgenic (39.3 °C, n=10n=10) zebra danios initially acclimated to 30 °C were statistically (but not dramatically) different as were mean chronic lethal minima of wildtype (5.3 °C, n=16n=16) and transgenic (5.6 °C, n=20n=20) zebra danios initially acclimated to 20 °C. These temperature tolerance values were used to estimate potential geographic distributions of the two varieties in the USA. Distributions of these D. rerio varieties in the USA should not be limited by their upper temperature tolerances, and low-temperature tolerance data suggest that both varieties are capable of overwintering in some southern and western US waters.  相似文献   

2.
Tendinopathy affects individuals who perform repetitive joint motion. Magnetic resonance imaging (MRI) is frequently used to qualitatively assess tendon health, but quantitative evaluation of inherent MRI properties of loaded tendon has been limited. This study evaluated the effect of cyclic loading on T2?T2? values of fresh and frozen rabbit patellar tendons using ultra short echo (UTE) MRI. Eight fresh and 8 frozen rabbit lower extremities had MR scans acquired for tendon T2?T2? evaluation. The tendons were then manually cyclically loaded for 100 cycles to 45 N at approximately 1 Hz. The MR scanning was repeated to reassess the T2?T2? values. Analyses were performed to detect differences of tendon T2?T2? values between fresh and frozen samples prior to and after loading, and to detect changes of tendon T2?T2? values between the unloaded and loaded configurations. No difference of T2?T2? was found between the fresh and frozen samples prior to or after loading, p=0.8 and p  =0.1, respectively. The tendons had significantly shorter T2?T2? values, p  =0.023, and reduced T2?T2? variability, p  =0.04, after cyclic loading. Histologic evaluation confirmed no induced tendon damage from loading. Shorter T2?T2?, from stronger spin–spin interactions, may be attributed to greater tissue organization from uncrimping of collagen fibrils and lateral contraction of the tendon during loading. Cyclic tensile loading of tissue reduces patellar tendon T2?T2? values and may provide a quantitative metric to assess tissue organization.  相似文献   

3.
We compared the accuracy of an ingestible telemetry pill method of core temperature (Tc) measurement and an infrared tympanic membrane thermometer to values from a rectal thermistor during exercise-induced heat stress. Ten well-trained subjects completed four exercise trials consisting of 40 min constant-load exercise at 63% of maximum work rate followed by a 16.1 km time trial at 30 °C and 70% relative humidity. Temperature at rest was not different between the three methods of Tc measurement (Tre: 37.2±0.3 °C; Tp: 37.2±0.2 °C; Tty: 37.1±0.3 °C; P=0.40P=0.40). Temperature rose continuously during the exercise period (ΔTre: 2.2±0.5 °C; ΔTp: 2.2±0.5 °C; ΔTty: 1.9±0.5 ±°C and there were no differences between Tre and Tp measurements at any time throughout exercise (P=0.32P=0.32). While there were no differences between Tre and Tty after 10 min (P=0.11P=0.11) and 20 min (P=0.06P=0.06) of exercise, Tty was lower than Tre after 30 min of exercise (P<0.01P<0.01) and remained significantly lower throughout the remainder of the exercise period. These results demonstrate that the telemetry pill system provides a valid measurement of trunk temperature during rest and exercise-induced thermal strain. Tty was significantly lower than Tre when temperature exceeded 37.5 °C. However, whether these differences are due to selective brain cooling or imperfections in the tympanic membrane thermometer methodology remains to be determined.  相似文献   

4.
In this paper we present a sampling framework for RNA structures of fixed topological genus. We introduce a novel, linear time, uniform sampling algorithm for RNA structures of fixed topological genus g  , for arbitrary g>0g>0. Furthermore we develop a linear time sampling algorithm for RNA structures of fixed topological genus g   that are weighted by a simplified, loop-based energy functional. For this process the partition function of the energy functional has to be computed once, which has O(n2)O(n2) time complexity.  相似文献   

5.
It is well known that mechanotransduction of hemodynamic forces mediates cellular processes, particularly those that lead to vascular development and maintenance. Both the strength and space-time character of these forces have been shown to affect remodeling and morphogenesis. However, the role of blood cells in the process remains unclear. We investigate the possibility that in the smallest vessels blood’s cellular character of itself will lead to forces fundamentally different than the time-averaged forces usually considered, with fluctuations that may significantly exceed their mean values. This is quantitated through the use of a detailed simulation model of microvessel flow in two principal configurations: a diameter D=6.5D=6.5μ  m tube—a model for small capillaries through which red blood cells flow in single-file—and a D=12D=12μm tube—a model for a nascent vein or artery through which the cells flow in a confined yet chaotic fashion. Results in both cases show strong sensitivity to the mean flow speed U  . Peak stresses exceed their means by greater than a factor of 10 when U/D?10U/D?10 s−1, which corresponds to the inverse relaxation time of a healthy red blood cell. This effect is more significant for smaller D cases. At faster flow rates, including those more commonly observed under normal, nominally static physiological conditions, the peak fluctuations are more comparable with the mean shear stress. Implications for mechanotransduction of hemodynamic forces are discussed.  相似文献   

6.
In this paper an SIS model for epidemic spreading on semi-directed networks is established, which can be used to examine and compare the impact of undirected and directed contacts on disease spread. The model is analyzed for the case of uncorrelated semi-directed networks, and the basic reproduction number R0R0 is obtained analytically. We verify that the R0R0 contains the outbreak threshold on undirected networks and directed networks as special cases. It is proved that if R0<1R0<1 then the disease-free equilibrium is globally asymptotically stable, otherwise the disease-free equilibrium is unstable and the unique endemic equilibrium exists, which is globally asymptotically stable. Finally the numerical simulations holds for these analytical results are given.  相似文献   

7.
We present a full-field technique that allows label-free cytoskeletal network imaging inside living cells. This noninvasive technique allows monitoring of the cytoskeleton dynamics as well as interactions between the latter and organelles on any timescale. It is based on high-resolution quantitative phase imaging (modified Quadriwave lateral shearing interferometry) and can be directly implemented using any optical microscope without modification. We demonstrate the capability of our setup on fixed and living Chinese hamster ovary cells, showing the cytoskeleton dynamics in lamellipodia during protrusion and mitochondria displacement along the cytoskeletal network. In addition, using the quantitative function of the technique, along with simulation tools, we determined the refractive index of a single tubulin microtubule to be ntubu=2.36±0.6ntubu=2.36±0.6 at λ=527λ=527 nm.  相似文献   

8.
Among individual cells of the same source and type, the complex shear modulus GG exhibits a large log-normal distribution that is the result of spatial, temporal, and intrinsic variations. Such large distributions complicate the statistical evaluation of pharmacological treatments and the comparison of different cell states. However, little is known about the characteristic features of cell-to-cell variation. In this study, we investigated how this variation depends on the spatial location within the cell and on the actin filament cytoskeleton, the organization of which strongly influences cell mechanics. By mechanically probing fibroblasts arranged on a microarray, via atomic force microscopy, we observed that the standard deviation σ   of GG was significantly reduced among cells in which actin filaments were depolymerized. The parameter σ also exhibited a subcellular spatial dependence. Based on our findings regarding the frequency dependence of σ   of the storage modulus GG, we proposed two types of cell-to-cell variation in GG that arise from the purely elastic and the frequency-dependent components in terms of the soft glassy rheology model of cell deformability. We concluded that the latter inherent cell-to-cell variation can be reduced greatly by disrupting actin networks, by probing at locations within the cell nucleus boundaries distant from the cell center, and by measuring at high loading frequencies.  相似文献   

9.
10.
11.
The Yule   process generates a class of binary trees which is fundamental to population genetic models and other applications in evolutionary biology. In this paper, we introduce a family of sub-classes of ranked trees, called Ω-trees, which are characterized by imbalance of internal nodes. The degree of imbalance is defined by an integer 0≤ω0ω. For caterpillars  , the extreme case of unbalanced trees, ω=0ω=0. Under models of neutral evolution, for instance the Yule model, trees with small ω are unlikely to occur by chance. Indeed, imbalance can be a signature of permanent selection pressure, such as observable in the genealogies of certain pathogens. From a mathematical point of view it is interesting to observe that the space of Ω-trees maintains several statistical invariants although it is drastically reduced in size compared to the space of unconstrained Yule trees. Using generating functions, we study here some basic combinatorial properties of Ω-trees. We focus on the distribution of the number of subtrees with two leaves. We show that expectation and variance of this distribution match those for unconstrained trees already for very small values of ω.  相似文献   

12.
13.
14.
A multi-group semi-stochastic model is formulated to describe Salmonella   dynamics on a pig herd within the UK and assess whether farm structure has any effect on the dynamics. The models include both direct transmission and indirect (via free-living infectious units in the environment and airborne infection). The basic reproduction number R0R0 is also investigated. The models estimate approximately 24.6% and 25.4% of pigs at slaughter weight will be infected with Salmonella within a slatted-floored and solid-floored unit respectively, which corresponds to values found in previous abattoir and farm studies, suggesting that the model has reasonable validity. Analysis of the models identified the shedding rate to be of particular importance in the control of Salmonella   spread, a finding also evident in an increase in the R0R0 value.  相似文献   

15.
Methods are developed to find rate constants, asymptotes, and first derivatives of proportional temperature change at time zero for second-order transients when rate of change in core temperature initially is retarded or accelerated. Methods are applied to data for cooling chicken eggs (initially retarded core dynamics) and cooling 1-day-old nestling House Wrens in broods under natural conditions (initially accelerated core dynamics). Asymptotes minus Te are used to estimate an average net metabolic heat production rate of 0.016 W±0.0108 (S.D., n=10n=10) for 1-day-old House Wrens, a value similar to previous estimates using different methods.  相似文献   

16.
17.
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μ  s after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J?0.1J?0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035?J?0.10.035?J?0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J?0.035J?0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures.  相似文献   

18.
19.
Analysis of fast chlorophyll fluorescence rise OJIP was carried out to assess the impact of diuron, paraquat and flazasulfuron on energy fluxes and driving forces for photosynthesis in Lemna minor. Results showed that diuron and paraquat treatment produced major changes in electron transport in active reaction centres (RCs). However, diuron had a more pronounced effect on the yield of electron transport per trapped exciton (ψ0) than on the yield of primary electron transport (φP0)(φP0) showing that dark reactions are more sensitive to diuron than light-dependent reactions. In contrast, paraquat treatment effects were not due to a target-specific action on those dark and light reactions. Paraquat also induced a marked surge in the total absorption of photosystem II (PSII) antenna chlorophyll per active RC displaying a large increase of the dissipation of excess energy through non-photochemical pathways (thermal dissipation processes). Flazasulfuron induced a slight decrease of both the total driving force for photosynthesis and the quantum yield of electron transport beyond QA combined to a small but significant increase of the non-photochemical energy dissipation per RC (DI0/RC). We conclude that energy fluxes and driving force for photosynthesis generate useful information about the behaviour of aquatic plant photosystems helping to localize different target sites and to distinguish heterogeneities inside the PSII complexes. Regardless of the active molecule tested, the DFABS, φE0φE0, DI0/RC and/or ET0/RC parameters indicated a significant variation compared to control while φP0φP0 (FV/FM) showed no significant inhibition suggesting that those parameters are more sensitive for identifying a plant’s energy-use efficiency than the maximum quantum yield of primary PS II photochemistry alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号