首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cover crops grown as green manure or for other purposes will affect nitrogen (N) distribution in the soil, and may thereby alter root growth of a succeeding crop. During two years, experiments were performed to study effects of nitrogen supply by green manure on root development of carrots (Daucus carota L). Total root intensity (roots cm−2 on minirhizotrons) was significantly affected by the green manures, and was highest in the control plots where no green manure had been grown. Spread of the root system into the interrow soil was also affected by green manure treatments, as the spread was reduced where spring topsoil Nmin was high. Although N supply and distribution in the soil profile differed strongly among the treatments, no effect was observed on the rooting depth of the carrot crops. Across all treatments the rooting front penetrated at a rate of 0.82 and 0.68 mm day−1 °C−1 beneath the crop rows and in the interrow soil, respectively. The minirhizotrons only allowed measurements down to 1 m, and the roots reached this depth before harvest. Extrapolating the linear relationship between temperature sum and rooting depth until harvest would lead to rooting depths of 1.59 and 1.18 m under the crop rows and in the interrow soil respectively. Soil analysis showed that the carrot crop was able to reduce Nmin to very low levels even in the 0.75 to 1.0 m soil layer, which is in accordance with the root measurements. Still, where well supplied, the carrots left up 90 kg N ha−1 in the soil at harvest. This seemed to be related to a limited N uptake capacity of the carrots rather than to insufficient root growth in the top metre of the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Row crops are often inefficient in utilizing soil resources. One reason for this appears to be inefficient rooting of the available soil volume. Five experiments were performed to study the temporal and spatial root development of cauliflower (cv. Plana). The crop was grown with 60 cm between rows, and root development was followed in minirhizotrons placed under the crop rows, 15 cm, and 30 cm from the crop rows. Soil was sampled and analyzed for nitrate content at the final harvest and once during growth. In two of the experiments N fertilizer rate was varied and in two of the other experiments two cultivars were compared (cv. Plana and Siria).The rooting depth of cauliflower was found to be linearly related to temperature sum, with a growth rate of 1.02 mm day-1 °C-1. Depending on duration of growth this leads to rooting depths at harvest of 85–115 cm. Soil analysis showed that the cauliflower was able to utilize soil nitrogen down to at least 100 cm.With Plana differences in root growth between row and interrow soil were only observed during early growth, but with Siria this difference was maintained until harvest. However, at harvest both cultivars had depleted row and interrow soil nitrate equally efficient. Nitrogen fertilizer did not affect overall root development significantly.The branching frequency of actively branching roots was increased in all soil layers from about 6 to 10 branches cm-1 by increasing N fertilizer additions from 130 to 290 kg N ha-1. Increasing N supply increased the number of actively branching roots in the topsoil and reduced it in the subsoil.The average growth rate of the roots was always highest in the newly rooted soil layers, but fell during time. At 74 days after planting very few roots were growing in the upper 60 cm of the soil whereas 70% of the root tips observed in the 80–100 cm soil layer were actively growing. Within each soil layer there was a large variation in growth rate of individual root tips.  相似文献   

3.
  1. Deep roots have long been thought to allow trees to coexist with shallow‐rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.
  2. We describe tree and grass root distributions using a depth‐specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point‐in‐time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).
  3. Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.
  4. The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.
  相似文献   

4.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

5.
Kage  Henning 《Plant and Soil》1997,190(1):47-60
It was the aim of this study was to evaluate the hypothesis that low rooting density of faba beans is the major reason for the comparable low depletion of Nmin-nitrogen from the rooted soil volume during the vegetation period. Therefore a simulation study was carried out using data from a two-year field experiment with faba beans and the reference crop oats. Since the nitrate dynamics in the soil is closely coupled with the water budget, the model simulated also the water uptake by plants, movement and content in the soil applying a numerical solution of the Richard's equation. The nitrogen budget part of the model includes calculation of vertical nitrate movement in the soil, mineralisation of nitrate from organic matter and nitrate uptake by the crop. Vertical nitrate movement was simulated with the convection-dispersion equation. Mineralisation was computed from a simple first order kinetic approach using only one fraction of mineralisable organic matter. Nitrate uptake was assumed to be determined either by the nitrogen demand of the crop, which was estimated from a logistic growth equation that was fitted to measured data of N-accumulation, or by the maximum nitrate transport rate towards the root surface. The latter was computed from a steady state solution of the diffusion - mass flow equation for cylindrical co-ordinates.For oats the model calculated a maximum nitrate transport rate towards roots that was quite close to the measured N-uptake of that crop. For faba beans, however, the calculated maximum nitrate transport towards roots was much lower than total N-uptake and lower than for oats. Consequently, simulated Nmin-contents below faba beans were during the growing season about 20-30 kg N ha–1 higher than below oats. This difference matches quite close with the observed differences between the two crops. Therefore it was concluded that low nitrate uptake resulting from low rooting density is the main reason for higher residual nitrate contents below faba beans at harvest time.  相似文献   

6.
The above-ground accumulation of N,N uptake and litter quality resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden (as part of the Skogaby project) is presented. Treatment include irrigation; artificial drought; ammonium sulphate addition; N-free-fertilisation and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingested principle (fertigation). At start of the experiment the stand contained 86.5 t dry mass and 352 kg N ha−1. The following three years the annual N uptake in untreated trees was 32 kg N ha−1 to be compared with the annual N throughfall of 17 kg ha−1. Simultaneously, the treatment with ammonium sulphate and liquid fertilisation resulted in 48 and 56 kg ha−1 y−1, respectively, in treatment specific N-uptake following an application of 100 kg N ha−1 y−1. Addition of a N-free fertiliser resulted in improved N-uptake by 19 kg N ha−1 y−1 and irrigation by 10 kg N ha−1 y−1, compared to control. A linear relation between total above-ground dry mass production and N-uptake was found for trees growing with similar water availability. Dry mass production increased with increased water availability given the same N-uptake. It is concluded that the studied stand this far is not N saturated', as N fertilisation resulted in both increased N uptake and increased growth. Addition of a N-free-fertiliser resulted in increased uptake of N compared to the control, indicating an increased mineralisation rate or uptake capacity of the root system. The linear relation between N uptake and biomass production shows that at this study site N is a highly limiting factor for growth.  相似文献   

7.
A study was carried out on the root distribution and root activity of the olive tree (Olea Europaea, L., var. manzanillo) as influenced by drip irrigation and by several soil characteristics such as texture and depth. The experiments were conducted in two plots within a drip-irrigated grove of 20-year-old trees planted at 7×7 m spacing. One soil was a sandy loam, the other a clay-loam. Both cylinder and trench methods were used to determine root distribution. Labelling with 32P was used to determine root activity. Under dryland conditions the adult tree adapted its rooting system, following the installation of a drip system, by concentrating the roots within the wet soil zones near the drippers. The highest root densities occur in those zones, down to a 0.6 m depth, the most abundant being the <0.5 mm diameter roots. The most intensive root activity was also found in that zone. For a given irrigation system, wet soil bulbs are more extensive and therefore root distribution expands to a larger soil volume when the soil is more clayey and with a hard calcareous pan present at about 0.8 m depth which prevents deep drainage.  相似文献   

8.
Chopart  J. L.  Siband  P. 《Plant and Soil》1999,214(1-2):61-74
Root length density (RLD) is an important determinant of crop water and nutrient acquisition, but is difficult to measure in the field. On a soil profile, in-situ counts of root impacts per unit surface on soil profiles (NI) can be used to calculate RLD if crop-specific parameters for preferential root orientation (anisotropy) are known. An improved method for field determinations of RLD was developed and validated for maize at sites in Côte d'Ivoire and Burkina Faso. Root anisotropy was measured with cubes of undisturbed soil with 0.1 m sidelength, based on NI observed on three planes oriented perpendicularly to each other. RLD was also measured for the enclosed volume. Repetition of such measurements enabled estimation of the robustness across sites of empirical and geometric models for the relationship between RLD and NI:RLD = NI CO, with CO being the coefficient of root orientation, theoretically equals 2 for an isotropic distribution. Root systems were found to be nearly isotropic, except near the root front (0.3 to 0.5 m), where roots had a preferentially orthotropic orientation. Measured RLD was generally about 50% larger than RLD calculated from observed NI and CO, indicating that at least one of the measurement techniques had a systematic error. The ratio between measured and calculated RLD (CE), which ranged from 0.8 to 2, increased with the age of the plants and decreased with soil depth. CE was therefore introduced as an additional coefficient, resulting in RLD = NI CO CE. The empirical value for CO CE was between 2 and 5. The empirical coefficients CO and CE were the same for the sites in Cote d'Ivoire (oxisol with an iron pan at 0.6 to 0.9 m) and Burkina Faso (alfisol with an iron pan at 0.4 to 0.8 m). The model was validated with independent data sets at both sites, and gave satisfactory predictions of RLD on the basis of NI obtained from single soil planes, which can be easily measured in the field.  相似文献   

9.
采用剖面法对宽窄行栽植模式下三倍体毛白杨(triploid Populus tomentosa)的根系分布特征进行了研究;采用管式TDR系统对土壤剖面含水率变化动态进行了连续观测,并据此计算林木根系吸水速率,以探讨土壤含水率、根系分布和根系吸水分布之间的相关关系。研究结果表明:毛白杨的总平均根长密度在林带两侧和不同径向距离处非常接近(P>0.05);但在不同土层间变化很大(P<0.01),其中0-20和60-150 cm土层为根系主要分布区域,其根系所占比例共达86%;不同径阶间的根长密度差异显著(P<0.01),且其比例关系会随空间位置的改变而发生变化。不同栽植方位下,林带东侧毛白杨根系分布的浅层化程度高于西侧,且在径向240-280 cm内其0-0.5 mm的极细根显著多于西侧(P<0.05)。因此,宽窄行栽植模式下,深度和径阶是毛白杨根系分布的主要影响因子,而栽植方位会对其形态构型产生影响。毛白杨根系吸水模式受细根分布的影响,但会随土壤剖面水分有效性分布的变化而变化:当表土层水分有效性增加时,根系吸水主要集中在表土层;当表土层水分有效性降低时,深层土壤根系的吸水贡献率会逐渐增加;当土壤剖面水分条件异质性较高时,根系吸水主要集中在根系密度与水分有效性均较高的区域;当土壤剖面水分分布均匀且不存在水分胁迫时,根系吸水分布与细根分布最为一致。  相似文献   

10.

Background and Aims

An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions.

Methods

The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root.

Key Results

Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest.

Conclusions

This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.  相似文献   

11.
Leaching of NO 3 from vegetable cropping systems can be very high compared to arable systems. This is a problem for vegetable growers in general as it decreases groundwater quality, and for organic growers in particular as the organic production is often limited by N. In a field experiment, we investigated the N uptake and root growth of three vegetables using minirhizotrons reaching 2.4 m with the purpose to study the relationship between vegetable root distribution and uptake of NO 3 from deep soil layers. NO 3 uptake was studied over a 6 d period at the end of September by injection of 15 NO 3 at four depths in the ranges: 0.2–0.8, 0.6–1.8, and 1–2.5 m under late sweet corn (Zea mays L. convar. Saccharata Koern.), carrot (Daucus carota L.), and autumn white cabbage (Brassica oleracea L. convar. capitata (L.) Alef. var. alba DC), respectively. The root depths of the three crops were 0.6, 1.3, and more than 2.4 m, respectively. Uptake of15N was close to zero from placements below root depth, and linear relationships were found between root density and15N uptake from different depths. N inflow rates (uptake per unit root length) were in the same range for all species and depths. This indicates that the very different N use efficiencies often found for vegetable crops depend on species specific differences in root development over time and space, more than on differences in N uptake ability of the single root. Thus deep rooting is important for deep N uptake. Knowledge about deep root growth enables design of crop rotations with improved N use efficiency based on re-cycling of deep soil NO 3 by vegetables.  相似文献   

12.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

13.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

14.
Fine root turnover of irrigated hedgerow intercropping in Northern Kenya   总被引:3,自引:0,他引:3  
Lehmann  Johannes  Zech  Wolfgang 《Plant and Soil》1998,198(1):19-31
Fine root turnover (<2 mm) was determined from repeated measurements of root distribution up to 120 cm soil depth by core sampling in four month intervals. Sole cropped Sorghum bicolor and Acacia saligna were compared with the agroforestry combination in an alley cropping system in semiarid Northern Kenya. Three methods for the calculation of root production were used: the max-min, balancing-transfer and compartment-flow method. The highest root biomass was found in the topsoil for all cropping systems, though trees had a deeper root system. Trees and crops had a similar amount of below-ground biomass during the vegetation period (0.3 and 0.4 Mg DM ha-1 120 cm-1), but in the agroforestry combination root biomass was more than the sum of the sole cropped systems (1.1 Mg DM ha-1 120 cm-1). The tree system showed a very static root development with little fluctuation between seasons, whereas root biomasses were very dynamic in the crop and tree + crop systems. Root production was highest in the tree + crop combination with 2.1 Mg DM ha-1 a-1, with about 50% less in sole cropped trees and crops. Root N input to soil decreased in the order tree + crop>tree>crop system with 13.5, 11.0 and 3.2 kg N ha-1 a-1, and cannot be estimated from total below-ground biomass or carbon turnover, as N is accumulated in senescing roots. Such low N input to soil stresses the need for investigating other processes of nutrient input from roots to soil. Areas of highest N input were identified in the topsoil under the tree row in the tree system. Resource utilisation and C and N input to soil were highest with a combination of annual and perennial crops.  相似文献   

15.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

16.
* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.  相似文献   

17.
The uptake of amino acids and inorganic nitrogen by roots of Puccinellia phryganodes was examined to assess the potential contribution of soluble organic nitrogen to plant nitrogen uptake in Arctic coastal marshes, where free amino acids constitute a substantial fraction of the soil‐soluble N pool. Short‐term excised root uptake experiments were performed using tillers grown hydroponically under controlled conditions in the field. The percentage reductions in ammonium uptake at moderate salinity (150 mm NaCl) compared with uptake at low salinity (50 mm NaCl) were double those of glycine, but glycine uptake was more adversely affected than ammonium uptake by low temperatures. Glycine uptake was higher at pH 5·7 than at pH 7·0 or 8·2. The glycine uptake was up‐regulated in response to glycine, whereas ammonium uptake was up‐regulated in response to ammonium starvation. Nitrate uptake was strongly down‐regulated when tillers were grown on either ammonium or glycine. In contrast to N‐starved roots, which absorbed ammonium ions more rapidly than glycine, the roots grown on glycine, ammonium and nitrate and not N‐starved prior to uptake absorbed glycine as rapidly as ammonium and nitrate ions combined. Overall, the results indicate that amino acids are probably an important source of nitrogen for P. phryganodes in Arctic coastal marshes.  相似文献   

18.
N fertilizer recommendatons are based on the Nmin content in the useable soil layer. However, for spinach, information from the literature differs for both depth of useable soil layer and N fertilizer recommendations. The objectives of these experiments were to study the importance of different soil zones for N supply to spinach and to kohlrabi, and to examine the relationship between N supply in the useable soil layer and yield of spinach. Field experiments with both crops showed that about 80% of total root length was in the upper 0–15 cm soil layer and less than 5% below 30 cm. Spinach roots were present in the 15–30 cm layer only during the last 2 weeks before harvest, whereas kohlrabi roots penetrated this layer already 4 weeks before harvest. Placement of NO3 below 30 cm depth did not influence root distribution. The top layer contributed about 80% to total N uptake for both crops. The 15–30 cm soil layer can maximally contribute 40–50 kg N ha-1. It is concluded that N fertilizer recommendations for both crops should be based on the Nmin content of the 0–30 cm soil layer. Maximum yield of spinach (300 dt f.m. ha-1) was obtained at 150 kg N supply ha-1. The nitrate residue was 50 kg N ha-1 at 0–30 cm in this treatment. It is argued that the nitrate residues at harvest could be decreased by delaying the harvest for a few days, at slightly suboptimal N supply.  相似文献   

19.
Both resource and disturbance controls have been invoked to explain tree persistence among grasses in savannas. Here we determine the extent to which competition for available resources restricts the rooting depth of both grasses and trees, and how this may influence nutrient cycling under an infrequently burned savanna near Darwin, Australia. We sampled fine roots <2 mm in diameter from 24 soil pits under perennial as well as annual grasses and three levels of canopy cover. The relative proportion of C3 (trees) and C4 (grasses) derived carbon in a sample was determined using mass balance calculations. Our results show that regardless of the type of grass both tree and grass roots are concentrated in the top 20 cm of the soil. While trees have greater root production and contribute more fine root biomass grass roots contribute a disproportional amount of nitrogen and carbon to the soil relative to total root biomass. We postulate that grasses maintain soil nutrient pools and provide biomass for regular fires that prevent forest trees from establishing while savanna trees, are important for increasing soil N content, cycling and mineralization rates. We put forward our ideas as a hypothesis of resource‐regulated tree–grass coexistence in tropical savannas.  相似文献   

20.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号