首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drones of stingless bee species often form distinctive congregations of up to several hundred individuals which can persist over considerable periods of time. Here we analyse the genetic structure of three drone congregations of the neotropical stingless bee Scaptotrigona mexicana employing eight microsatellite markers. Two congregations were close to each other (50 m), the third one was located more than 10 km away from them. This spatial pattern was also reflected on the genetic level : the two close congregations did not show any population sub-structuring, whereas the more distant congregation showed a significant population differentiation to both of them. Population subdifferentiation was however low with F st values (F st = 0.020 and 0.014) between the distant congregations, suggesting gene flow over larger distances mediated by the drones of S. mexicana. Based on the genotypic data we also estimated the number of colonies contributing drones to the congregations. The two joint congregations consisted of drones originating from 39,6 colonies, while the third congregation was composed of drones from 21,8 colonies, thus proving that congregations of S. mexicana are constituted of unrelated drones of multicolonial origin. Received 23 April 2007; revised 21 September 2007; accepted 2 October 2007.  相似文献   

2.
In stingless bees, sex is determined by a single complementary sex-determining locus. This method of sex determination imposes a severe cost of inbreeding because an egg fertilized by sperm carrying the same sex allele as the egg results in a sterile diploid male. To explore how reproductive strategies may be used to avoid inbreeding in stingless bees, we studied the genetic structure of a population of 27 colonies and three drone congregations of Trigona collina in Chanthaburi, Thailand. The colonies were distributed across six nest aggregations, each aggregation located in the base of a different fig tree. Genetic analysis at eight microsatellite loci showed that colonies within aggregations were not related. Samples taken from three drone congregations showed that the males were drawn from a large number of colonies (estimated to be 132 different colonies in our largest swarm). No drone had a genotype indicating that it could have originated from the colony that it was directly outside. Combined, these results suggest that movements of drones and possibly movements of reproductive swarms among colony aggregations provide two mechanisms of inbreeding avoidance.  相似文献   

3.
Summary Morphometric data obtained from natural andin vitro-rared queens, workers, and drones of the stingless bee.Scaptotrigona postica were subjected to allometric and multivariate tests to study sex- and caste-related growth patterns. As imaginai phenotype variation appears to be restricted in members of a normal colony, the inclusion ofin vitro-reared individuals permitted an analysis of a considerably wider size range for each morph, and proved important for the calculation of reliable regression statistics in the allometric analyses. Our results show that essentially no individuals with a mixture or transition of sex or caste traits are produced, and, consequently, that for most morphometric characters, queens, workers, and drones lie on different regression lines. Hence, workers cannot be considered as masculinized females, as has been suggested in studies based exclusively on multivariate analyses. Instead, the various morphs may result from a stepwise programming and reprogramming of a few growth rule parameters during critical stages of preimaginal development, and complex hypothetical shifts in the balance of maleness and femaleness genes need not be assumed. A multivariate discriminant analysis, on the other hand, proved to be an efficient tool for the selection of diagnostic size characters.Dedicated to Warwick Estevam Kerr, the Brazilian pioneer of stingless bee genetics, on the occasion of his 70th birthday, September 9, 1992.  相似文献   

4.
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.  相似文献   

5.
6.
Summary

Chemical communication is an ancient yet still immensely important part of reproduction. Amongst all invertebrates, the most sophisticated “chemical languages” are used by social insects. Here the sex- and caste-specific pheromonal messages consist of multicomponent mixtures. In the neotropical stingless bee Scaptotrigona postica, an inhabitant of dense tropical rain forests, the cephalic volatiles of a queen transmit information on her reproductive status to males. A distinct ontogenetic pattern of the queen pheromone composition allows drones to discriminate receptive virgins which are then chased during the short nuptial flight through the forest understorey. By means of gas chromatographic/mass spectroscopic analyses, the numerous volatile compounds found in pentane extracts of individual bee heads could be identified. Qualitative as well as quantitative changes of these volatiles in the course of imaginal development could be determined, and bioassays with synthetic compounds were undertaken in order to decode the chemical signals used during the short encounter of a young queen and her mate.  相似文献   

7.
8.
Although diverse biological disciplines employ the nematode Caenorhabditis elegans as a highly efficient laboratory model system, little is known about its natural history. We investigated its evolutionary past using 10 polymorphic trinucleotide and tetranucleotide microsatellites, derived from across the whole genome. These microsatellites were analyzed from the 35 previously available natural isolates from different parts of the world and also 23 new strains isolated from northwest Germany. Our results highlight that C. elegans lineages differentiate genetically with respect to geographic distance and, to a lesser extent, differences in the time of strain isolation. The latter indicates some turnover of strain genotypes at specific locations. Our data also demonstrate the coexistence of highly diverse genotypes in the population from northwest Germany, which is best explained by recent migration events. Furthermore, selfing is confirmed as the primary mode of reproduction for this hermaphroditic nematode in nature. Importantly, we also find evidence for the occurrence of occasional outbreeding. Taken together, these results support the previous notion that C. elegans is a colonizer, whereby selfing may permit rapid dispersal within new habitats even in the absence of potential mates, whereas occasional outcrossing may serve to compensate for the disadvantages of inbreeding. Such information about the natural history of C. elegans should be of great value for an in-depth understanding of the complexity of this organism, including its multifaceted developmental, neurological, or molecular genetic pathways.  相似文献   

9.
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.  相似文献   

10.
We carried out a field study on the life history and sex allocationof the ground-nesting solitary bee Diadasina distincta (Hymenoptera: Anthophoridae).This species is multivoltine, undergoing five generations a yearbetween February and September. The numerical sex ratio of thisspecies was female biased overall (approximately 38% males)and showed a strong and consistent seasonal pattern. The numericalsex ratio was extremely female biased (approximately 20% males)from February until May, and then slightly male biased (approximately60% males) from June until September. Females were 3.26 timesthe size of males, and so the overall investment ratio was female biasedthroughout the year. The overall female bias and seasonal variationin sex allocation is unlikely to be explained by models thatinvoke overlapping generations or competition between brothersfor mates (local mate competition). We suggest that a possibleexplanation for the female bias in the early part of the seasonis local resource enhancement (LRE): nesting near larger numbersof sisters reduces parasitism. LRE is likely to decrease in importancein the later part of the season, when the biased numerical and investmentratios may be explained by models in which male and female offspringgain different fitness returns from resources invested.  相似文献   

11.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

12.
Owing to habitat loss populations of many organisms have declined and become fragmented. Vertebrate conservation strategies routinely consider genetic factors, but their importance in invertebrate populations is poorly understood. Bumblebees are important pollinators, and many species have undergone dramatic declines. As monoandrous social hymenopterans they may be particularly susceptible to inbreeding due to low effective population sizes. We study fragmented populations of a bumblebee species, on a model island system, and on mainland Great Britain where it is rare and declining. We use microsatellites to study: population genetic structuring and gene flow; the relationships between genetic diversity, population size and isolation; and frequencies of (sterile) diploid males - an indicator of inbreeding. We find significant genetic structuring (theta = 0.12) and isolation by distance. Populations > 10 km apart are all significantly differentiated, both on oceanic islands and on the mainland. Genetic diversity is reduced relative to closely related common species, and isolated populations exhibit further reductions. Of 16 populations, 10 show recent bottlenecking, and 3 show diploid male production. These results suggest that surviving populations of this rare insect suffer from inbreeding as a result of geographical isolation. Implications for the conservation of social hymenopterans are discussed.  相似文献   

13.
Translocations of threatened species can reduce the risk of extinction from a catastrophic event. For plants, translocation consists of moving individuals, seeds, or cuttings from a native (source) population to a new site. Ideally a translocation population would be genetically diverse and consist of fit founding individuals. In practice, there are challenges to designing such a population, including constraints on the availability of material, and tradeoffs between different goals. Here, we present an approach for designing a translocation population that identifies sets of founders that are optimized according to multiple criteria (e.g., genetic diversity), while also conforming to constraints on the representation of different founders (e.g., propagation success). It uses flexible inputs, including SNP genotypes, matrices of similarity between individuals, and vectors of phenotype data. We apply the approach to a critically endangered plant, Hibbertia puberula subsp. glabrescens (Dilleniaceae), which was genotyped at thousands of SNP loci. The goals of minimizing genetic similarity among the founding individuals and maximizing genetic diversity were largely complementary: populations optimized for one of these criteria were near‐optimal for the other. We also performed analyses in which we minimized genetic similarity among founding individuals while imposing selection (against hypothetical deleterious alleles, and against undesirable phenotypes, respectively), and here characterized sharp tradeoffs. This was useful in allowing the benefits of selection to be weighed against costs in terms of genetic similarity. In summary, we present an approach for designing a translocation population that allows flexible inputs, the imposition of realistic constraints, and examination of conflicting goals.  相似文献   

14.
The genetic structure of the Alpine marmot, Marmota marmota, was studied by an analysis of five polymorphic microsatellite loci. Eight locations were sampled in the French Alps, one from Les Ecrins valley (n = 160), another from La Sassière valley (n = 289) and the six others from the Maurienne valley (n = 139). Information on social group structure was available for both Les Ecrins and La Sassière but not for the other samples. The high levels of genetic diversity observed are at odds with the results obtained using microsatellites, minisatellites and allozymes on Alpine marmots from Germany, Austria and Switzerland. Strong deficits in heterozygotes were found in Les Ecrins and La Sassière. They are caused by a Wahlund effect due to the family structure (i.e. differentiation between the family groups). The family groups exhibit excess of heterozygotes rather than deficits. This may be caused by outbreeding and this is compatible with recent results from the genetics of related social species when information on the social structure is taken into account. The observed outbreeding could be the result of females mating with transient males or males coming from neighbouring colonies. Both indicate that the species may not be as monogamous as is usually believed. The results are also compatible with a male-biased dispersal but do not allow us to exclude some female migration. We also found a significant correlation between geographical and genetic distance indicating that isolation by distance could be an issue in marmots. This study is the first that analysed populations of marmots taking into account the social structure within populations and assessing inbreeding at different levels (region, valley, population, and family groups). Our study clearly demonstrated that the sampling strategy and behavioural information can have dramatic effects on both the results and interpretation of the genetic data.  相似文献   

15.
The nest and population genetic structures of the Argentine ant, Linepithema humile were investigated using eight microsatellite loci. Genotypes of the sperm from spermathecae of 87 queens were consistent with all queens being singly inseminated. The probability of a double mating remaining undetected was low (0.012) suggesting that no queens or only a very low proportion mate multiply. The relatedness between the queens and their mates was negative (R = -0.164 +/- 0.044) and significantly different to zero (P = 0.020). However, the high negative relatedness value was caused by a significant allele frequency difference between the sexes at a single locus (Lhum-28). When this locus was removed from the analyses, the relatedness was not significantly different from zero (R = 0.013 +/- 0.050, P = 0.812). Analysis of 10 nests revealed that the genetic differentiation among nests was weak (FST = 0.003) and not distinguishable from zero (P = 0.468). Similarly, the overall relatedness among nestmate females was not significantly different from zero (R = 0.007 +/- 0.018, P = 0.706). These results are consistent with the lack of distinct nest boundaries and the large number of queens per nest in the population studied. Although mating takes place inside the nest, the inbreeding coefficient was close to zero (F = 0.007 +/- 0.025, P = 0.786). Overall, these data indicate substantial local gene flow mediated by movement of reproductives among colonies.  相似文献   

16.
The genetic diversity of Varroa destructor (Anderson &Trueman)is limited outside its natural range due to population bottlenecks and its propensity to inbreed.In light of the arms race between V.destructor and its honeybee (Apis mellifera L.)host, any mechanism enhancing population admixture of the mite may be favored.One way that admixture can occur is when two genetically dissimilar mites coinvade a brood cell, with the progeny of the foundresses admixing.We determined the relatedness of 393 pairs of V.destructor foundresses,each pair collected from a single bee brood cell (n =five colonies).We used six microsatellites to identify the genotypes of mites coinvading a cell and calculated the frequency of pairs with different or the same genotypes.We found no deviation from random coinvasion,but the frequency of cells infested by mites with different genotypes was high.This rate of recombination,coupled with a high transmission rate of mites,homogenized the allelic pool of mites within the apiary.  相似文献   

17.
1. Genetic colony structure of the small central European ant Leptothorax nylanderi is affected strongly by ecological constraints such as nest site availability and intraspecific social parasitism. 2. Although L. nylanderi is generally monogynous and monandrous, more than a quarter of all nests collected in a dense population near Würzburg, Germany, contained several matrilines. As shown by microsatellite analysis, the average nest‐mate relatedness in these nests was 0.20. Genetically heterogeneous nests arise from nest take‐over by alien colonies or founding queens, a result of severe competition for nest sites. 3. In summer, more than one‐third of all colonies inhabited several nest sites at a time. Polydomy appears to be rather limited, with two or three nests belonging to a single polydomous colony. 4. Queens appear to dominate male production; only a small fraction (8%) of males was definitively not progeny of the queen present but might have been worker progeny or offspring of another queen. 5. Strong evidence for heterozygote deficiency was found and a total of nine diploid males was discovered in two colonies. These findings suggest deviation from random mating through small, localised nuptial flights.  相似文献   

18.
Paxton  R. J. 《Insectes Sociaux》2000,47(1):63-69
Summary: Stingless bee queens have for long been assumed to mate once on a nuptial flight, early in life. To evaluate critically monandry in one stingless bee, Scaptotrigona postica, worker offspring (adults or brood) were genetically analysed with microsatellite loci, five of which were developed specifically for the species. Marker loci were highly variable; unbiased estimates of heterozygosity were > 0.5. "Foreign" workers, either those having drifted from other colonies (circa 2%) or those of a replacement queen, were identified with the genetic markers and removed from further analysis. Worker genotypes were consistent with some queens having mated once and others having mated with up to six different males. Scaptotrigona postica queens are therefore facultatively polyandrous. Effective mating frequencies, me, were generally lower than the number of patrilines observed. Relatedness estimates of nestmates from individual colonies concurred with those derived from direct counts of the number of patrilines and their proportional representation. Putative genotypes of a colony's queen and her mates were deduced from those of her workers. Queens were generally not related to their mates. For one polyandrous queen, her six mates were related to each other, possibly because of numerically biased representation of males from different colonies at mating sites. However, males at an aggregation outside a colony came from numerous colonies.  相似文献   

19.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

20.
The Regal Fritillary butterfly, Speyeria idalia (Drury) (Lepidoptera: Nymphalidae), has been described as a high gene flow species. Supporting this assertion, previous studies in the Great Plains, where it is still relatively widespread, have found evidence of gene flow across hundreds of kilometers. Using mitochondrial and microsatellite loci, we examined the spatial genetic structure of a very isolated Pennsylvania population of these butterflies that occupies three separate meadows located within ten kilometers of each other. We found restricted gene flow and a distinct structure, with each meadow having a unique genetic signature. Our findings indicate that even a species that normally exhibits high gene flow may show fine-scale genetic subdivision in areas where populations have been largely extirpated.Authors contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号