首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Muscle atrophy occurs in many pathological states, including cancer, diabetes and sepsis, whose results primarily from accelerated protein degradation and activation of the ubiquitin‐proteasome pathway. Expression of Muscle RING finger 1 (MuRF1), an E3 ubiquitin ligase, was increased to induce the loss of muscle mass in diabetic condition. However, hydrogen sulphide (H2S) plays a crucial role in the variety of physiological functions, including antihypertension, antiproliferation and antioxidant. In this study, db/db mice and C2C12 myoblasts treated by high glucose and palmitate and oleate were chose as animal and cellular models. We explored how exogenous H2S attenuated the degradation of skeletal muscle via the modification of MuRF1 S‐sulfhydration in db/db mice. Our results show cystathionine‐r‐lyase expression, and H2S level in skeletal muscle of db/db mice was reduced. Simultaneously, exogenous H2S could alleviate ROS production and reverse expression of ER stress protein markers. Exogenous H2S could decrease the ubiquitination level of MYOM1 and MYH4 in db/db mice. In addition, exogenous H2S reduced the interaction between MuRF1 with MYOM1 and MYH4 via MuRF1 S‐sulfhydration. Based on these results, we establish that H2S prevented the degradation of skeletal muscle via MuRF1 S‐sulfhydration at the site of Cys44 in db/db mice.  相似文献   

2.
3.
4.
5.
6.
7.
In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.  相似文献   

8.
9.
We previously found that km23‐1/DYNLRB1 is required for transforming growth factor‐β (TGFβ) production through Ras/ERK pathways in TGFβ‐sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23‐1/DYNLRB1 is required for mitogen‐activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23‐1/DYNLRB1‐siRNA inhibition of phospho‐(p)‐MEK immunostaining in RKO cells. Furthermore, we show that CRISPR‐Cas9 knock‐out (KO) of km23‐1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD‐1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ‐mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ‐mediated activation of MEK1/2 or c‐Jun N‐terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B‐Raf, extracellular signal‐regulated kinase (ERK), and p‐ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23‐1/DYNLRB1 co‐sedimented with Ras, p‐ERK, and ERK in fractions that did not contain components of holo‐dynein. Thus, km23‐1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein‐independent km23‐1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R‐Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23‐1/DYNLRB1 and RRas wase co‐localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23‐1/DYNLRB1‐R‐Ras complex in CRC invasion.  相似文献   

10.
The self‐incompatibility (SI) response occurs widely in flowering plants as a means of preventing self‐fertilization. In these self/non‐self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil‐secreted S‐RNases enter the pollen tube and function as cytotoxins to specifically arrest self‐pollen tube growth. Recent studies have revealed that the S‐locus F‐box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF‐interacting Skp1‐like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1‐Cullin1‐F‐box)SLF complex, indicating that this pollen‐specific SSK1‐SLF interaction occurs in both Petunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross‐pollen compatibility (CPC) in the S‐RNase‐based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S‐RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1‐like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.  相似文献   

11.
12.
MEK1, an essential component of the mitogen‐activated protein kinase (MAPK) pathway, is phosphorylated during activation of the pathway; 12 phosphorylation sites have been identified in human MEK1 by MS‐based phosphoproteomic methods. By using Phos‐tag SDS‐PAGE, we found that multiple variants of MEK1 with different phosphorylation states are constitutively present in typical human cells. The Phos‐tag‐based strategy, which makes effective use of existing information on the location of phosphorylation sites, permits quantitative time‐course profiling of MEK1 phosphospecies in their respective phosphorylation states. By subsequent immunoblotting with an anti‐HaloTag antibody, we analyzed a HaloTag‐fused MEK1 protein and 12 potential phosphorylation‐site‐directed mutants of the protein transiently expressed in HEK 293 cells. This strategy revealed that MEK1 is constitutively and mainly phosphorylated at the Thr‐292, Ser‐298, Thr‐386, and Thr‐388 residues in vivo, and that combinations of phosphorylations at these four residues produce at least six phosphorylated variants of MEK1. Like the levels of phosphorylation of the Ser‐218 and Ser‐222 residues by RAF1, which have been well studied, the phosphorylation statuses of Thr‐292, Ser‐298, Thr‐386, and Thr‐388 residues vary widely during activation and deactivation of the MAPK pathway. Furthermore, we demonstrated inhibitor‐specific profiling of MEK1 phosphospecies by using three MEK inhibitors: TAK‐733, PD98059, and U0126.  相似文献   

13.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

14.
Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration‐dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin‐induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated β‐galactosidase activity. In DNA damage‐induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage‐induced senescence.  相似文献   

15.
16.
Limited research has been performed on S‐adenosylhomocysteine (SAH) or homocysteine (Hcy)‐evoked cell damage in hepatic and neuronal cells. In this study, we assessed effects of SAH or Hcy on cell cytotoxicity and DNA damage in hepatic and neuronal cells and attempted to find the underlying mechanism. Cell cytotoxicity and DNA damage were evaluated in murine hepatic cells (BNL CL.2 cell line) and microglia cells (BV‐2 cell line) with SAH or Hcy treatment for 48 h. The influences of SAH or Hcy on lipid peroxidation and DNA methylation were also measured in both cell lines. SAH (5–20 μM) or Hcy (1–5 mM) dose dependently inhibited cell cytotoxicity and enhanced DNA damage in both types of cells. Furthermore, SAH treatment markedly increased intracellular SAH levels and DNA hypomethylation, whereas Hcy caused minimal effects on these two parameters at much higher concentrations. Hcy significantly induced lipid peroxidation, but not SAH. The present results show that SAH might cause cellular DNA damage in hepatic and microglia cells by DNA hypomethylation, resulting in irreversible DNA damage and increased cell cytotoxicity. In addition, higher Hcy could induce cellular DNA damage through increased lipid peroxidation and DNA hypomethylation. We suggest that SAH is a better marker of cell damage than Hcy in hepatic and microglia cells. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:349–356, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20298  相似文献   

17.
In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA–DNA hybrids (R‐loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA–DNA hybrids produced at a double‐strand break (DSB) generated by I‐PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1? rnh201? cells, which lack the RNase H enzymes, accumulate R‐loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. “Dirty” DSBs generated by ionizing radiation, as well as a “clean” DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA–DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R‐loops collapse replication forks in rnh1? rnh201? cells, but RNase H is not generally required for efficient DSB repair.  相似文献   

18.
S‐Acyl cysteine peptides containing α‐, β‐ or γ‐amino acid residues undergo long‐range S‐ to N‐acyl transfer to give analogs of native tripeptides and tetrapeptides containing additional carbon atoms in the chain. The ease of intramolecular SN‐acyl transfer relative to intermolecular transacylation is favored increasingly for 9 < 12 < 13 ~ 10‐membered cyclic transition states; the observed order is explained on conformational and intermolecular interaction considerations. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
20.
3-nitrotyrosine (NO2-Tyr) is thought to be a specific marker of cell injury during oxidative damage. We have evaluated the role of poly(ADP-ribose)polymerase-1 (PARP-1) in protein nitration after treatment of immortalized fibroblasts parp-1+/+ and parp-1-/- with the alkylating agent 2'-methyl-2'-nitroso-urea (MNU). Both cell lines showed increased iNOS expression following MNU treatment in parallel with a selective induction of tyrosine nitration of different proteins. PARP-1 deficient cells displayed a delayed iNOS accumulation, reduced number of nitrated proteins, and a lower global nitrotyrosine "footprint." We have identified the mitochondrial compartment as the major site of oxidative stress during DNA damage, being MnSOD one of the NO2-Tyr-modified proteins, but not in parp-1-/- cells. These results suggest that NO-derived injury can be modulated by proteins involved in the response to genotoxic damage, such as PARP-1, and may account for the limited oxidative injury in parp-1 knockout mice during carcinogenesis and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号