首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 3 毫秒
1.
《Biologicals》2014,42(5):290-293
Nanofiltration is incorporated into the manufacturing processes of many protein biopharmaceuticals to enhance safety by providing the capacity to retain pathogens while allowing protein drugs to pass through the filter. Retention is mainly a function of size; however, the shape of the pathogen may also influence retention. The ability of the Viresolve® Pro nanofilter to remove different sized viruses during the manufacture of a Coagulation Factor IX (Alphanine® SD) was studied at varying ionic strength, a process condition with the potential to affect virus shape and, hence, virus retention. Eight viruses were tested in a scale-down of the nanofiltration process. Five of the viruses (EMCV, Reo, BVDV, HIV, PRV) were nanofiltered at normal sodium processing conditions and three (PPV, HAV and WNV) were nanofiltered at higher and lower sodium. Representative Reduction Factors for all viruses were ≥4.50 logs and removal was consistent over a wide range of ionic strength.  相似文献   

2.
DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5–1000 mM) over a range of pH (5–9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH 6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries.  相似文献   

3.
While reversed-phase chromatography (RPC) may be a powerful method for purification of proteins at the analytical scale, both preparative and analytical applications have been hindered by the complex chromatographic behavior of proteins compared to small molecules. Further, preparative applications have been limited because of poor yields caused by the denaturing conditions involved. One means for modulating both the stability and chromatographic behavior of proteins is through the use of added salt. In this investigation, we show how salt type and ionic strength affect protein conformation on RPC surfaces. Exposure of amide groups of adsorbed BPTI was monitored using nuclear magnetic resonance (NMR) spectroscopy and hydrogen-deuterium isotope exchange. Sodium chloride, sodium acetate, and ammonium sulfate were studied at ionic strengths up to I = 0.375, with adsorption hold times being 5 min and 2 h. We found that increasing ionic strength decreased exposure of the exchange reporter groups in essentially all cases. However, even at the same ionic strength the level and distribution of residue protection varied with salt type and hold time. NaCl does not protect certain reporter groups at all, while those that it does protect to some degree at short hold times can exchange slightly more at longer times. The pattern and level of protection for NaAc at short times is similar to that for NaCl, but at longer times more uniform protection is seen as the reporter groups completely exposed at short times become more protected. For (NH(4))(2)SO(4) the pattern of protection at short hold time is similar to those of the other salts, although it protects all groups much more. This would be expected from the Hofmeister series. However, at longer times the level of protection with (NH(4))(2)SO(4) decreases below that of the other salts, while it uniquely protects all groups to nearly the same level. Such subtle variations in the protein structure would not have been detected without the measurements and analysis used here. Chromatographic retention times and peak shapes were obtained for the above systems. Variations of behavior were seen that could not be correlated with any of the above protection patterns and levels or even with heuristics such as the Hofmeister series. This suggests further conformational changes upon elution may be critical to the retention process. However, an excellent correlation was found between peak width at half-height and the average degree of unfolding, as indicated by the average level of isotopic exchange. Thus, while further studies are needed to definitively determine the connection between protein unfolding and retention, use of this correlation may improve designing and screening for chromatographic conditions that minimize protein unfolding.  相似文献   

4.
The chemical states of a cross-bridge--nucleotide complex were studied using a fluorescent ATP analogue, 1-N6-etheno-2-aza-ATP(epsilon-2-aza-ATP). The fluorescence of epsilon-2-aza-ATP at specific emission wavelengths was enhanced by 12.5 times upon binding to myosin in a relaxed muscle and the fluorescence from the resultant myosin(M)-epsilon-2-aza-ADP-Pi intermediate was 2.5 times greater than that from a M-epsilon-2-aza-ADP complex. Similar enhancements of the fluorescence of epsilon-2-aza-ATP and epsilon-2-aza-ADP were observed upon binding to heavy meromyosin in solution. Binding of F-actin did not change the fluorescence of epsilon-2-aza-ATP or epsilon-2-aza-ADP bound to heavy meromyosin. When a muscle went from a relaxed state to a state of isometric contraction or contraction with shortening, the fluorescence intensity decreased only slightly or not at all, i.e. the fluorescence of nucleotides bound to most of the myosin heads during contraction is the same as that of the M-epsilon-2-aza-ADP-Pi intermediate. These results suggest that an actomyosin(AM)-epsilon-2-aza-ADP-Pi intermediate is the predominant attached state during contraction. When the ionic strength of the relaxing solution was decreased, cross-bridges formed at 6 degrees C without tension generation. At 20 degrees C, a large tension was produced although the shortening velocity was negligibly small or zero. The fluorescence intensity decreased by 15% at 20 degrees C but only a small decrease of 3% was observed at 6 degrees C, suggesting that the predominant complexes in the attached state were AM-epsilon-2-aza-ATP and/or AM-2-aza-ADP-Pi at 6 degrees C and AM-epsilon-2-aza-ADP at 20 degrees C. Thus, the identification of the actomyosin-nucleotide complexes existing before and after the force-generating step lent further support to the conclusion that the sliding force is generated by conformational changes in actomyosin when the (epsilon-2-aza-)ADP-Pi complex is bound to it.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号