首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Initial pollen-pistil interactions in the Brassicaceae are regulated by rapid communication between pollen grains and stigmatic papillae and are fundamentally important, as they are the first step toward successful fertilization. The goal of this study was to examine the requirement of exocyst subunits, which function in docking secretory vesicles to sites of polarized secretion, in the context of pollen-pistil interactions. One of the exocyst subunit genes, EXO70A1, was previously identified as an essential factor in the stigma for the acceptance of compatible pollen in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We hypothesized that EXO70A1, along with other exocyst subunits, functions in the Brassicaceae dry stigma to deliver cargo-bearing secretory vesicles to the stigmatic papillar plasma membrane, under the pollen attachment site, for pollen hydration and pollen tube entry. Here, we investigated the functions of exocyst complex genes encoding the remaining seven subunits, SECRETORY3 (SEC3), SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmas following compatible pollinations. Stigma-specific RNA-silencing constructs were used to suppress the expression of each exocyst subunit individually. The early postpollination stages of pollen grain adhesion, pollen hydration, pollen tube penetration, seed set, and overall fertility were analyzed in the transgenic lines to evaluate the requirement of each exocyst subunit. Our findings provide comprehensive evidence that all eight exocyst subunits are necessary in the stigma for the acceptance of compatible pollen. Thus, this work implicates a fully functional exocyst complex as a component of the compatible pollen response pathway to promote pollen acceptance.In flowering plants, sexual reproduction occurs as a result of constant communication between the male gametophyte and the female reproductive organ, from the initial acceptance of compatible pollen to final step of successful fertilization (for review, see Beale and Johnson, 2013; Dresselhaus and Franklin-Tong, 2013; Higashiyama and Takeuchi, 2015). In the Brassicaceae, the stigmas that present a receptive surface for pollen are categorized as dry and covered with unicellular papillae (Heslop-Harrison and Shivanna, 1977). Communication is initiated rapidly following contact of a pollen grain with a stigmatic papilla, as the role of the papillae is to regulate the early cellular responses leading to compatible pollen germination. The basal compatible pollen recognition response also presents a barrier to foreign pollen or is inhibited with self-incompatible pollen (for review, see Dickinson, 1995; Hiscock and Allen, 2008; Chapman and Goring, 2010; Indriolo et al., 2014b).The initial adhesive interaction between the pollen grain and the papilla cell in the Brassicaceae is mediated by the exine of the pollen grain and the surface of the stigmatic papilla (Preuss et al., 1993; Zinkl et al., 1999). A stronger connection results between the adhered pollen grain and the stigmatic papilla with the formation of a lipid-protein interface (foot) derived from the pollen coat and the stigmatic papillar surface (Mattson et al., 1974; Stead et al., 1980; Gaude and Dumas, 1986; Elleman and Dickinson, 1990; Elleman et al., 1992; Preuss et al., 1993; Mayfield et al., 2001). It is at this point that a Brassicaceae-specific recognition of compatible pollen is proposed to occur (Hülskamp et al., 1995; Pruitt, 1999), though the nature of this recognition system is not clearly defined. Two stigma-specific Brassica oleracea glycoproteins, the S-Locus Glycoprotein and S-Locus Related1 (SLR1) protein, play a role in compatible pollen adhesion (Luu et al., 1997, 1999), potentially through interactions with the pollen coat proteins, PCP-A1 and SLR1-BP, respectively (Doughty et al., 1998; Takayama et al., 2000). The simultaneous recognition of self-incompatible pollen would also take place at this stage (for review, see Dresselhaus and Franklin-Tong, 2013; Indriolo et al., 2014b; Sawada et al., 2014). Thus, this interface not only provides a strengthened bond between the pollen grain and stigmatic papilla, but likely facilitates the interaction of signaling proteins from both partners to promote specific cellular responses in the stigmatic papilla toward the pollen grain.One response regulated by these interactions is the release of water from the stigmatic papilla to the adhered compatible pollen grain to enable the pollen grain to rehydrate, germinate, and produce a pollen tube (Zuberi and Dickinson, 1985; Preuss et al., 1993). Upon hydration, the pollen tube emerges at the site of pollen-papilla contact and penetrates the stigma surface between the plasma membrane and the overlaying cell wall (Elleman et al., 1992; Kandasamy et al., 1994). Pollen tube entry into the stigmatic surface represents a second barrier, selecting compatible pollen tubes. Subsequently, the compatible pollen tubes traverse down to the base of the stigma, enter the transmitting tract, and grow intracellularly toward ovules for fertilization. Pollen-pistil interactions at these later stages are also highly regulated (for review, see Beale and Johnson, 2013; Dresselhaus and Franklin-Tong, 2013; Higashiyama and Takeuchi, 2015).EXO70A1, a subunit of the exocyst, was identified as a factor involved in early pollen-stigma interactions, where it is required in the stigma for the acceptance of compatible pollen and inhibited by the self-incompatibility response (Samuel et al., 2009). Stigmas from the Arabidopsis (Arabidopsis thaliana) exo70A1 mutant display constitutive rejection of wild-type-compatible pollen (Samuel et al., 2009; Safavian et al., 2014). This stigmatic defect was rescued by the stigma-specific expression of an Red Fluorescent Protein (RFP):EXO70A1 transgene (Samuel et al., 2009) or partially rescued by providing a high relative humidity environment (Safavian et al., 2014). In addition, the stigma-specific expression of an EXO70A1 RNA interference construct in Brassica napus ‘Westar’ resulted in impaired compatible pollen acceptance and a corresponding reduction in seed production compared with compatible pollinations with wild-type B. napus ‘Westar’ pistils (Samuel et al., 2009). From these studies, EXO70A1 was found to be a critical component in stigmatic papillae to promote compatible pollen hydration and pollen tube entry through the stigma surface. One of the functions of the exocyst is to mediate polar secretion (for review, see Heider and Munson, 2012; Zárský et al., 2013; Synek et al., 2014). Consistent with this, previous studies have observed vesicle-like structures in proximity to the stigmatic papillar plasma membrane in response to compatible pollen in both Brassica spp. and Arabidopsis species (Elleman and Dickinson, 1990, 1996; Dickinson, 1995; Safavian and Goring, 2013; Indriolo et al., 2014a). The secretory activity is predicted to promote pollen hydration and pollen tube entry. As well, consistent with the proposed inhibition of EXO70A1 by the self-incompatibility pathway (Samuel et al., 2009), a complete absence or a significant reduction of vesicle-like structures at the stigmatic papillar plasma membrane was observed in the exo70A1 mutant and with self-incompatible pollen (Safavian and Goring, 2013; Indriolo et al., 2014a).The exocyst is a well-defined complex in yeast (Saccharomyces cerevisiae) and animal systems, consisting of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Exocyst subunit mutants were first identified in yeast as secretory mutants displaying a cytosolic accumulation of secretory vesicles (Novick et al., 1980). Subsequent work defined roles for the exocyst in vesicle docking at target membranes in processes such as regulated secretion, polarized exocytosis, and cytokinesis to facilitate membrane fusion by Soluble NSF Attachment protein Receptor (SNARE) complexes (for review, see Heider and Munson, 2012; Liu and Guo, 2012). In plants, genes encoding all eight exocyst subunits have been identified, and many of these genes exist as multiple copies. For example, the Arabidopsis genome contains single copy genes for SEC6 and SEC8, two copies each for SECRETORY3 (SEC3), SEC5, SEC10, and SEC15, three EXO84 genes, and 23 EXO70 genes (Chong et al., 2010; Cvrčková et al., 2012; Vukašinović et al., 2014). Ultrastructural studies using electron tomography uncovered the existence of a structure resembling the exocyst in Arabidopsis (Otegui and Staehelin, 2004; Seguí-Simarro et al., 2004). Localization studies of specific Arabidopsis exocyst subunits also supported conserved roles in polarized exocytosis and cytokinesis in plants. Localization studies have shown EXO70, SEC6, and SEC8 at the growing tip of pollen tubes (Hála et al., 2008), EXO70A1 at the stigmatic papillar plasma membrane (Samuel et al., 2009), SEC3a, SEC6, SEC8, SEC15b, EXO70A1, and EXO84b at the root epidermal cell plasma membrane and developing cell plate (Fendrych et al., 2010, 2013; Wu et al., 2013; Zhang et al., 2013; Rybak et al., 2014), and SEC3a at the plasma membrane in the embryo and root hair (Zhang et al., 2013). Similar to the yeast exocyst mutants, vesicle accumulation has also been observed in the exo70A1 and exo84b mutants (Fendrych et al., 2010; Safavian and Goring, 2013). Taken together, these findings strongly support that plant exocyst subunits function in vivo in vesicle docking at sites of polarized secretion and cytokinesis (for review, see Zárský et al., 2013). In support of this, a recent study investigating Transport Protein Particle (TRAPP)II and exocyst complexes during cytokinesis in Arabidopsis has identified all eight exocyst components in immunoprecipitated complexes (SEC3a/SEC3b, SEC5a, SEC6, SEC8, SEC10, SEC15b, EXO70A1, EXO70H2, and EXO84b; Rybak et al., 2014).Several plant exocyst subunit genes have been implicated in biological processes that rely on regulated vesicle trafficking, where corresponding mutants have displayed a range of growth defects. At the cellular level, these phenotypes have been associated with decreased cell elongation and polar growth (Cole et al., 2005, 2014; Wen et al., 2005; Synek et al., 2006), defects in cytokinesis and cell plate formation (Fendrych et al., 2010; Wu et al., 2013; Rybak et al., 2014), and disrupted Pin-Formed (PIN) auxin efflux carrier recycling and polar auxin transport (Drdová et al., 2013). Several Arabidopsis subunit mutants display strong growth defects such as the sec3a mutant with an embryo-lethal phenotype (Zhang et al., 2013), sec6, sec8, and exo84b mutants with severely dwarfed phenotypes and defects in root growth (Fendrych et al., 2010; Wu et al., 2013; Cole et al., 2014), and exo70A1 with a milder dwarf phenotype (Synek et al., 2006). The Arabidopsis exo70A1 mutant has also been reported to have defects in root hair elongation, hypocotyl elongation, compatible pollen acceptance, seed coat deposition, and tracheary element differentiation (Synek et al., 2006; Samuel et al., 2009; Kulich et al., 2010; Li et al., 2013). Essential roles for other exocyst subunits include Arabidopsis SEC5a/SEC5b, SEC6, SEC8, and SEC15a/SEC15b in male gametophyte development and pollen tube growth (Cole et al., 2005; Hála et al., 2008; Wu et al., 2013), SEC8 in seed coat deposition (Kulich et al., 2010), SEC5a, SEC8, EXO70A1, and EXO84b in root meristem size and root cell elongation (Cole et al., 2014), and a maize (Zea mays) SEC3 homolog in root hair elongation (Wen et al., 2005). Finally, the Arabidopsis EXO70B1, EXO70B2, and EXO70H1 subunits have been implicated in plant defense responses (Pecenková et al., 2011; Stegmann et al., 2012; Kulich et al., 2013; Stegmann et al., 2013).Even with these detailed studies on the functions of exocyst subunits in plants, a systematic demonstration of the requirement of all eight exocyst subunits in a specific plant biological process is currently lacking. EXO70A1 was previously identified as an essential factor in the stigma for compatible pollen-pistil interactions in Arabidopsis and B. napus (Samuel et al., 2009), and we hypothesized that this protein functions as part of the exocyst complex to tether post-Golgi secretory vesicles to stigmatic papillar plasma membrane (Safavian and Goring, 2013). To provide support for the proposed biological role of the exocyst in the stigma for compatible pollen acceptance, we investigated the roles of the remaining seven subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmatic papillae. Given that some Arabidopsis exocyst subunits were previously determined to be essential at earlier growth stages, stigma-specific RNA-silencing constructs were used for each exocyst subunit, and the early postpollination stages were analyzed for these transgenic lines. Our collective data demonstrates that all eight exocyst subunits are required in the stigma for the early stages of compatible pollen-pistil interactions.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes.Pollen tubes play a crucial role in flowering plant reproduction. A pollen tube is the vegetative cell of the male gametophyte. It undergoes rapid polarized growth in order to transport the two nonmotile sperm cells to an ovule. This rapid growth is supported by the constant delivery of secretory vesicles to the pollen tube tip, where they fuse with the plasma membrane to enlarge the cell (Bove et al., 2008; Bou Daher and Geitmann, 2011; Chebli et al., 2013). This vesicle delivery is assumed to be driven by the rapid movement of organelles and cytosol throughout the cell, a process that is commonly referred to as cytoplasmic streaming (Shimmen, 2007). Cytoplasmic streaming in angiosperm pollen tubes forms a reverse fountain: organelles moving toward the tip travel along the cell membrane, while organelles moving away from the tip travel through the center of the tube (Heslop-Harrison and Heslop-Harrison, 1990; Derksen et al., 2002). Drug treatments revealed that pollen tube cytoplasmic streaming and tip growth depend on actin filaments (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 1989; Parton et al., 2001; Vidali et al., 2001). Curiously, very low concentrations of actin polymerization inhibitors can prevent growth without completely stopping cytoplasmic streaming, indicating that cytoplasmic streaming is not sufficient for pollen tube growth (Vidali et al., 2001). At the same time, however, drug treatments have not been able to specifically inhibit cytoplasmic streaming; thus, it is unknown whether cytoplasmic streaming is necessary for pollen tube growth.Myosins are actin-based motor proteins that actively transport organelles throughout the cell and are responsible for cytoplasmic streaming in plants (Shimmen, 2007; Sparkes, 2011; Madison and Nebenführ, 2013). Myosins can be grouped into at least 30 different classes based on amino acid sequence similarity of the motor domain, of which only class VIII and class XI myosins are found in plants (Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Class VIII and class XI myosins have similar domain architecture. The N-terminal motor domain binds actin and hydrolyzes ATP (Tominaga et al., 2003) and is often preceded by an SH3-like (for sarcoma homology3) domain of unknown function. The neck domain, containing IQ (Ile-Gln) motifs, acts as a lever arm and is bound by calmodulin-like proteins that mediate calcium regulation of motor activity (Kinkema and Schiefelbein, 1994; Yokota et al., 1999; Tominaga et al., 2012). The coiled-coil domain facilitates dimerization (Li and Nebenführ, 2008), and the globular tail functions as the cargo-binding domain (Li and Nebenführ, 2007). Class VIII myosins also contain an N-terminal extension, MyTH8 (for myosin tail homology8; Mühlhausen and Kollmar, 2013), and class XI myosins contain a dilute domain in the C-terminal globular tail (Kinkema and Schiefelbein, 1994; Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Recently, Mühlhausen and Kollmar (2013) proposed a new nomenclature for plant myosins based on a comprehensive phylogenetic analysis of all known plant myosins that clearly identifies paralogs and makes interspecies comparisons easier (Madison and Nebenführ, 2013).The localization of class VIII myosins, as determined by immunolocalization and the expression of fluorescently labeled full-length or tail constructs, has implicated these myosins in cell-to-cell communication, cell division, and endocytosis in angiosperms and moss (Reichelt et al., 1999; Van Damme et al., 2004; Avisar et al., 2008; Golomb et al., 2008; Sattarzadeh et al., 2008; Yuan et al., 2011; Haraguchi et al., 2014; Wu and Bezanilla, 2014). On the other hand, class XI myosin mutants have been studied extensively in Arabidopsis (Arabidopsis thaliana), which revealed roles for class XI myosins in cell expansion and organelle motility (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Very few studies have examined the reproductive tissues of class XI myosin mutants. In rice (Oryza sativa), one myosin XI was shown to be required for normal pollen development under short-day conditions (Jiang et al., 2007). In Arabidopsis, class XI myosins are required for stigmatic papillae elongation, which is necessary for normal fertility (Ojangu et al., 2012). Even though pollen tubes of myosin XI mutants have not been examined, the tip growth of another tip-growing plant cell has been thoroughly examined in myosin mutants. Root hairs are tubular outgrowths of root epidermal cells that function to increase the surface area of the root for water and nutrient uptake. Two myosin XI mutants have shorter root hairs, of which the myo11e1 (xik; myosin XI K) mutation has been shown to be associated with a slower root hair growth rate and reduced actin dynamics compared with the wild type (Ojangu et al., 2007; Peremyslov et al., 2008; Park and Nebenführ, 2013). Higher order mutants have a further reduction in root hair growth and have altered actin organization (Prokhnevsky et al., 2008; Peremyslov et al., 2010). Disruption of actin organization was also observed in myosin XI mutants of the moss Physcomitrella patens (Vidali et al., 2010), where these motors appear to coordinate the formation of actin filaments in the apical dome of the tip-growing protonemal cells (Furt et al., 2013). Interestingly, organelle movements in P. patens are much slower than in angiosperms and do not seem to depend on myosin motors (Furt et al., 2012).The function of myosins in pollen tubes is currently not known, although it is generally assumed that they are responsible for the prominent cytoplasmic streaming observed in these cells by associating with organelle surfaces (Kohno and Shimmen, 1988; Shimmen, 2007). Myosin from lily (Lilium longiflorum) pollen tubes was isolated biochemically and shown to move actin filaments with a speed of about 8 µm s−1 (Yokota and Shimmen, 1994) in a calcium-dependent manner (Yokota et al., 1999). Antibodies against this myosin labeled small structures in both the tip region and along the shank (Yokota et al., 1995), consistent with the proposed role of this motor in moving secretory vesicles to the apex.In Arabidopsis, six of 13 myosin XI genes are highly expressed in pollen: Myo11A1 (XIA), Myo11A2 (XID), Myo11B1 (XIB), Myo11C1 (XIC), Myo11C2 (XIE), and Myo11D (XIJ; Peremyslov et al., 2011; Sparkes, 2011). The original gene names (Reddy and Day, 2001) are given in parentheses. Myo11D is the only short-tailed myosin XI in Arabidopsis (Mühlhausen and Kollmar, 2013) and lacks the typical myosin XI globular tail involved in cargo binding (Li and Nebenführ, 2007). The remaining genes have the same domain architecture as the conventional class XI myosins that have been shown to be involved in the elongation of trichomes, stigmatic papillae, and root hairs (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Therefore, we predicted that these five pollen-expressed, conventional class XI myosins are required for the rapid elongation of pollen tubes. In this study, we examined transfer DNA (T-DNA) insertion mutants of Myo11A1, Myo11A2, Myo11B1, Myo11C1, and Myo11C2 for defects in fertility and pollen tube growth. Organelle motility and actin organization were also examined in myo11c1 myo11c2 pollen tubes.  相似文献   

11.
12.
13.
Calcium plays an essential role in pollen tube tip growth. However, little is known concerning the molecular basis of the signaling pathways involved. Here, we identified Arabidopsis (Arabidopsis thaliana) CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19 (CIPK19) as an important element to pollen tube growth through a functional survey for CIPK family members. The CIPK19 gene was specifically expressed in pollen grains and pollen tubes, and its overexpression induced severe loss of polarity in pollen tube growth. In the CIPK19 loss-of-function mutant, tube growth and polarity were significantly impaired, as demonstrated by both in vitro and in vivo pollen tube growth assays. Genetic analysis indicated that disruption of CIPK19 resulted in a male-specific transmission defect. Furthermore, loss of polarity induced by CIPK19 overexpression was associated with elevated cytosolic Ca2+ throughout the bulging tip, whereas LaCl3, a Ca2+ influx blocker, rescued CIPK19 overexpression-induced growth inhibition. Our results suggest that CIPK19 may be involved in maintaining Ca2+ homeostasis through its potential function in the modulation of Ca2+ influx.In flowering plants, fertilization is mediated by pollen tubes that extend directionally toward the ovule for sperm delivery (Krichevsky et al., 2007; Johnson, 2012). The formation of these elongated tubular structures is dependent on extreme polar growth (termed tip growth), in which cell expansion occurs exclusively in the very apical area (Yang, 2008; Rounds and Bezanilla, 2013). As this type of tip growth is amenable to genetic manipulation and cell biological analysis, the pollen tube is an excellent model system for the functional analysis of essential genes involved in polarity control and fertilization (Yang, 2008; Qin and Yang, 2011; Bloch and Yalovsky, 2013).It is well established that Ca2+ plays a critical role in pollen germination and tube growth (Konrad et al., 2011; Hepler et al., 2012). A steep tip-focused Ca2+ gradient has been detected at the tip of elongating pollen tubes (Rathore et al., 1991; Pierson et al., 1994; Hepler, 1997). In previous studies, artificial dissipation of the Ca2+ gradient seriously inhibited tip growth of pollen tubes, whereas elevation of internal Ca2+ level induced bending of the growth axis toward the zone of higher Ca2+. These studies suggest that Ca2+ not only controls pollen tube elongation but also modulates growth orientation (Miller et al., 1992; Malho et al., 1994; Malho and Trewavas, 1996; Hepler, 1997). These Ca2+ signatures are perceived and relayed to downstream responses by a complex toolkit of Ca2+-binding proteins that function as Ca2+ sensors (Yang and Poovaiah, 2003; Harper et al., 2004; Dodd et al., 2010).To date, four major Ca2+ sensor families have been identified in Arabidopsis (Arabidopsis thaliana), including calcium-dependent protein kinase, calmodulin (CaM), calmodulin-like (CML), and CALCINEURIN B-LIKE (CBL) proteins (Luan et al., 2002, 2009; Yang and Poovaiah, 2003; Harper et al., 2004). Calcium-dependent protein kinase family members comprise a kinase domain and a CaM-like domain in a single protein; thus, they act not only as a Ca2+ sensor but also as an effector, designated as sensor responders (Cheng et al., 2002). In contrast, CaM, CML, and CBL proteins do not have any enzymatic domains but transmit Ca2+ signals to downstream targets via Ca2+-dependent protein-protein interactions. Therefore, they have been designated as sensor relays (McCormack et al., 2005). While CaM and CML proteins interact with a diverse array of target proteins, it is generally accepted that CBLs interact specifically with a group of Ser/Thr protein kinases termed CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASEs (CIPKs; Luan et al., 2002; Kolukisaoglu et al., 2004).In Arabidopsis, several CBLs coupled with their target CIPKs have been demonstrated to function in the regulation of ion homeostasis and stress responses (Luan et al., 2009). Under salt stress, SALT OVERLY SENSITIVE3 (SOS3)/CBL4-SOS2/CIPK24 regulate SOS1 at the plasma membrane for Na+ exclusion, whereas CBL10-CIPK24 complexes appear to regulate Na+ sequestration at the tonoplast (Liu et al., 2000; Qiu et al., 2002; Kim et al., 2007; Quan et al., 2007). For low-K+ stress, CBL1 and CBL9, with 87% amino acid sequence identity, interact with CIPK23, which regulates a voltage-gated ion channel (ARABIDOPSIS K+ TRANSPORTER1) to mediate the uptake of K+ in root hairs (Li et al., 2006; Xu et al., 2006; Cheong et al., 2007). In addition, CBL1 integrates plant responses to cold, drought, salinity, and hyperosmotic stresses (Albrecht et al., 2003; Cheong et al., 2003), and CBL9 is involved in abscisic acid signaling and biosynthesis during seed germination (Pandey et al., 2004). Over the past decade, the functions of CBL-CIPK complexes in abiotic stress tolerance have been studied extensively, but only limited studies focus on CBL family members in pollen tube growth. For example, CBL3 overexpression caused a defective phenotype in pollen tube growth (Zhou et al., 2009). Overexpression of CBL1 or its closest homolog CBL9 inhibited pollen germination and perturbed tube growth at high external K+, whereas disruption of CBL1 and CBL9 leads to a significantly reduced growth rate of pollen tubes under low-K+ conditions (Mähs et al., 2013). The potential roles of CIPKs in pollen tubes so far appear to be completely unknown.In this study, we demonstrated that Arabidopsis CIPK19, a CIPK specifically expressed in pollen grains and pollen tubes, functions in pollen tube tip growth, providing a new insight into the function of the CBL-CIPK network in the control of growth polarity during pollen tube extension in fertilization.  相似文献   

14.
15.
During polarized growth of pollen tubes, endomembrane trafficking and actin polymerization are two critical processes that establish membrane/wall homeostasis and maintain growth polarity. Fine-tuned interactions between these two processes are therefore necessary but poorly understood. To better understand such cross talk in the model plant Arabidopsis (Arabidopsis thaliana), we first established optimized concentrations of drugs that interfere with either endomembrane trafficking or the actin cytoskeleton, then examined pollen tube growth using fluorescent protein markers that label transport vesicles, endosomes, or the actin cytoskeleton. Both brefeldin A (BFA) and wortmannin disturbed the motility and structural integrity of ARA7- but not ARA6-labeled endosomes, suggesting heterogeneity of the endosomal populations. Disrupting endomembrane trafficking by BFA or wortmannin perturbed actin polymerization at the apical region but not in the longitudinal actin cables in the shank. The interference of BFA/wortmannin with actin polymerization was progressive rather than rapid, suggesting an indirect effect, possibly due to perturbed endomembrane trafficking of certain membrane-localized signaling proteins. Both the actin depolymerization drug latrunculin B and the actin stabilization drug jasplakinolide rapidly disrupted transport of secretory vesicles, but each drug caused distinct responses on different endosomal populations labeled by ARA6 or ARA7, indicating that a dynamic actin cytoskeleton was critical for some steps in endomembrane trafficking. Our results provide evidence of cross talk between endomembrane trafficking and the actin cytoskeleton in pollen tubes.Pollen tubes of flowering plants are specialized cells that deliver immotile sperm to the proximity of female gametes for successful reproduction (Johnson and Preuss, 2002). The growth of pollen tubes is both polar and directional (Hepler et al., 2001); many cellular activities contribute to such growth, the most important being the dynamics of the actin cytoskeleton system, targeted exocytosis, and endocytosis (Hepler et al., 2001).Pollen tubes contain longitudinal actin cables along the shank, which are important for providing structural support and acting as tracks for the movement of large organelles (Staiger et al., 1994). The apical area of pollen tubes instead contains dynamic filamentous actin (F-actin), as shown by fluorescently labeled actin-binding proteins (Kost et al., 1999; Fu et al., 2001; Chen et al., 2002; Wilsen et al., 2006). The dynamics of F-actin are critical for the polarized growth of pollen tubes. Genetically manipulating the activities of the small GTPases ROP (Kost et al., 1999; Fu et al., 2001; Cheung et al., 2008) and Rab (de Graaf et al., 2005), or of actin-binding proteins such as profilin and formin (Staiger et al., 1994; Chen et al., 2002; Cheung and Wu, 2004), disrupted F-actin dynamics and inhibited tube growth and caused apical bulges. Application of drugs such as latrunculin B (LatB) and jasplakinolide (Jas) showed similar effects (Gibbon et al., 1999; Vidali et al., 2001; Cardenas et al., 2005; Hörmanseder et al., 2005; Chen et al., 2007).Targeted exocytosis delivers building materials for cell membranes and cell walls and therefore is critical for maintaining growth polarity and directionality of growing pollen tubes (Hepler et al., 2001). Because targeted exocytosis brings more membrane and wall materials than needed to the apex of a pollen tube, an active endocytic system exists to retrieve excess secreted materials. In addition to this nonselective bulk membrane retrieval, pollen tubes may have selective and regulated endocytic trafficking pathways. For example, experiments using charged gold particles indicated the existence of two distinct endocytic pathways in tobacco (Nicotiana tabacum) pollen tubes (Moscatelli et al., 2007), and other studies showed that pollen tubes are able to take in materials from the extracellular matrix (Lind et al., 1996; Goldraij et al., 2006). The axis of targeted exocytosis correlated with the direction of tube growth and it asymmetrically changed toward the new apex during tube reorientation (Camacho and Malho, 2003; de Graaf et al., 2005). Disruption of membrane trafficking altered growth trajectories (de Graaf et al., 2005). Both suggest that membrane trafficking is a critical part of polarity maintenance and reorientation.As two important cellular processes in pollen tube growth, membrane trafficking and actin polymerization are conceivably dependent on each other. For example, several studies demonstrated that dynamic actin polymerization was essential for membrane trafficking (Hörmanseder et al., 2005; Wang et al., 2005; Chen et al., 2007; Lee et al., 2008), while others explored whether membrane trafficking affected actin polymerization (de Graaf et al., 2005; Hörmanseder et al., 2005). These studies, however, were mostly done with rapidly growing pollen tubes from tobacco or lily (Lilium longiflorum). For the model plant Arabidopsis (Arabidopsis thaliana), whose pollen tubes grow slower, little is known in this regard. Given a robust protocol for Arabidopsis pollen germination (Boavida and McCormick, 2007), it is now possible to investigate the interactions between these two cellular activities.In this study, we analyzed the effects of drug treatments on Arabidopsis pollen tubes expressing fluorescent protein probes for transport vesicles, endosomes, or the actin cytoskeleton. We show that perturbing actin dynamics by LatB or Jas treatments disrupted the V-shaped distribution of transport vesicles, caused aggregation, and finally dissipation of a subpopulation of endosomes, indicating that actin dynamics are critical at some steps of endomembrane trafficking. On the other hand, disturbing endomembrane trafficking with brefeldin A (BFA) or wortmannin abolished the F-actin structure at the apical region without affecting the longitudinal actin cables at the shank. These results provide evidence that endomembrane trafficking and actin dynamics interact at certain steps during polarized growth of Arabidopsis pollen tubes.  相似文献   

16.
In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression.In angiosperms, the pollen wall is the most complex plant cell wall. It consists of the inner wall, the intine, and the outer wall, the exine. The exine is further divided into sexine and nexine layers. The sculptured sexine includes three major parts: baculum, tectum, and tryphine (Heslop-Harrison, 1971; Piffanelli et al., 1998; Ariizumi and Toriyama, 2011; Fig. 1A). Production of a functional pollen wall requires the precise spatial and temporal cooperation of gametophytic and sporophytic tissues and metabolic events (Blackmore et al., 2007). The intine layer is controlled gametophytically, while the exine is regulated sporophytically. The sporophytic tapetum cells provide material for pollen wall formation, while primexine determines pollen wall patterning (Heslop-Harrison, 1968).Open in a separate windowFigure 1.Schematic representation of the pollen wall and primexine development. A, The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and tryphine (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. The exine includes the nexine and sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at the early tetrad stage (left panel). Subsequently, the plasma membrane becomes undulated (middle panel) and sporopollenin deposits on the peak of the undulated plasma membrane to form bacula and tectum (right panel).After meiosis, four microspores were encased in callose to form a tetrad. Subsequently, the primexine develops between the callose layer and the microspore membrane (Fig. 1B), and the microspore plasma membrane becomes undulated (Fig. 1B; Fitzgerald and Knox, 1995; Southworth and Jernstedt, 1995). Sporopollenin precursors then accumulate on the peak of the undulated microspore membrane to form the bacula and tectum (Fig. 1B; Fitzgerald and Knox, 1995). After callose degradation, individual microspores are released from the tetrad, and the bacula and tectum continue to grow into exine with further sporopollenin deposition (Fitzgerald and Knox, 1995; Blackmore et al., 2007).The callose has been reported to affect primexine deposition and pollen wall pattern formation. The peripheral callose layer, secreted by the microsporocyte, acts as the mold for primexine (Waterkeyn and Bienfait, 1970; Heslop-Harrison, 1971). CALLOSE SYNTHASE5 (CalS5) is the major enzyme responsible for the biosynthesis of the callose peripheral of the tetrad (Dong et al., 2005; Nishikawa et al., 2005). Mutation of Cals5 and abnormal CalS5 pre-mRNA splicing resulted in defective peripheral callose deposition and primexine formation (Dong et al., 2005; Nishikawa et al., 2005; Huang et al., 2013). Besides CalS5, four membrane-associated proteins have also been reported to be involved in primexine formation: DEFECTIVE EXINE FORMATION1 (DEX1; Paxson-Sowders et al., 1997, 2001), NO EXINE FORMATION1 (NEF1; Ariizumi et al., 2004), RUPTURED POLLEN GRAIN1 (RPG1; Guan et al., 2008; Sun et al., 2013), and NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU; Chang et al., 2012). Mutation of DEX1 results in delayed primexine formation (Paxson-Sowders et al., 2001). The primexine in nef1 is coarse compared with the wild type (Ariizumi et al., 2004). The loss-of-function rpg1 shows reduced primexine deposition (Guan et al., 2008; Sun et al., 2013), while the npu mutant does not deposit any primexine (Chang et al., 2012). Recently, it was reported that Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE G1 (CDKG1) associates with the spliceosome to regulate the CalS5 pre-mRNA splicing for pollen wall formation (Huang et al., 2013). Clearly, disrupted primexine deposition leads to aberrant pollen wall patterning and ruptured pollen grains in these mutants.The plant hormone auxin has multiple roles in plant reproductive development (Aloni et al., 2006; Sundberg and Østergaard, 2009). Knocking out the two auxin biosynthesis genes, YUC2 and YUC6, caused an essentially sterile phenotype in Arabidopsis (Cheng et al., 2006). Auxin transport is essential for anther development; defects in auxin flow in anther filaments resulted in abnormal pollen mitosis and pollen development (Feng et al., 2006). Ding et al. (2012) showed that the endoplasmic reticulum-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Evidence for the localization, biosynthesis, and transport of auxin indicates that auxin regulates anther dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2004, 2008). The role of auxin in pollen wall development has not been reported.The auxin signaling pathway requires the auxin response factor (ARF) family proteins (Quint and Gray, 2006; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Vanneste and Friml, 2009). ARF proteins can either activate or repress the expression of target genes by directly binding to auxin response elements (AuxRE; TGTCTC/GAGACA) in the promoters (Ulmasov et al., 1999; Tiwari et al., 2003). The Arabidopsis ARF family contains 23 members. A subgroup in the ARF family, ARF10, ARF16, and ARF17, are targets of miRNA160 (Okushima et al., 2005b; Wang et al., 2005). Plants expressing miR160-resistant ARF17 exhibited pleiotropic developmental defects, including abnormal stamen structure and reduced fertility (Mallory et al., 2005). This indicates a potential role for ARF17 in plant fertility, although the detailed function remains unknown. In addition, ARF17 was also proposed to negatively regulate adventitious root formation (Sorin et al., 2005; Gutierrez et al., 2009), although an ARF17 knockout mutant was not reported and its phenotype is unknown.In this work, we isolated and characterized a loss-of-function mutant of ARF17. Results from cytological observations suggest that ARF17 controls callose biosynthesis and primexine deposition. Consistent with this, the ARF17 protein is highly abundant in microsporocytes and tetrads. Furthermore, we demonstrate that the ARF17 protein is able to bind the promoter region of CalS5. Our results suggest that ARF17 regulates pollen wall pattern formation in Arabidopsis.  相似文献   

17.
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.Pollen tube growth provides a unique model system for studying the role of exocytosis in cell morphogenesis. Pollen tubes are characterized by a highly rapid polarized unidirectional tip growth. Given the relative simplicity of their structure, fast growth rates, haploid genome content, and ability to grow under in vitro culture conditions, pollen tubes provide an extremely attractive system for studying cell morphogenesis. Furthermore, the growth characteristics of pollen tubes resemble those of root hairs, moss protonema, and fungal hyphae and to some extent can be paralleled to neurite growth (Chebli and Geitmann, 2007; Cheung and Wu, 2008; Guan et al., 2013; Hepler and Winship, 2015).It is well established that oscillating polarized exocytosis is fundamental for pollen tube development and determines growth rate (Bove et al., 2008; McKenna et al., 2009; Chebli et al., 2013). Exocytosis is required for the delivery of membrane and cell wall components to the growing tip. Yet, the exact location where exocytosis takes place is under debate. Ultrastructural studies showing the accumulation of vesicles at the tip suggested that exocytosis takes place at the tip (Lancelle et al., 1987; Lancelle and Hepler, 1992; Derksen et al., 1995), which was further supported by studies on the dynamics of cell wall thickness (Rojas et al., 2011), secretion of pectin methyl esterase (PME) and PME inhibitor, and staining of pectin by propidium iodide (PI; Röckel et al., 2008; Rounds et al., 2014). Conversely, based on colabeling with FM1-43 and FM4-64, it was concluded that exocytosis takes place in a subapical collar located in the transition zone between the tip and the shank, as well as at the shank, but not at the tip (Bove et al., 2008; Zonia and Munnik, 2008). In agreement, the pollen tube-specific syntaxin GFP-SYP124 was observed in the inverted cone, 10 to 25 μm away from the tip (Silva et al., 2010), and fluorescence recovery after photobleaching experiments with FM dyes also have indicated that exocytosis takes place at the subapical region (Bove et al., 2008; Moscatelli et al., 2012; Idilli et al., 2013). Yet, based on pollen tube reorientation experiments in a microfluidics device, it was concluded that growth takes place at the tip rather than at a subapical collar located in the transition zone between the apex and the shank (Sanati Nezhad et al., 2014). The tip-based growth is in agreement with exocytosis taking place at the tip. Presumably, part of the disagreement regarding the site of exocytosis resulted from the lack of intracellular markers for exocytosis (Cheung and Wu, 2008; Hepler and Winship, 2015), and as a result, the relationship between the FM dye-labeled inverted cone and exocytotic events during pollen tube growth is not fully understood.In many cell types, the process of secretory vesicles tethering and docking prior to fusion with the plasma membrane is initially mediated by an evolutionarily conserved tethering complex known as the exocyst. The exocyst is a heterooligomeric protein complex composed of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Studies originally based on budding yeast (Saccharomyces cerevisiae) have shown that the exocyst functions as an effector of Rab and Rho small GTPases that specifies the sites of vesicle docking and fusion at the plasma membrane in both space and time (Guo et al., 2001; Zhang et al., 2001). Support for the function of the exocyst in vesicle tethering was demonstrated recently by ectopic Sec3p-dependent vesicle recruitment to the mitochondria (Luo et al., 2014).Land plants contain all subunits of the exocyst complex, which were shown to form the functional complex (Elias et al., 2003; Cole et al., 2005; Synek et al., 2006; Hála et al., 2008). Studies in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) have implicated the exocyst in the regulation of pollen tube and root hair growth, seed coat deposition, response to pathogens, cytokinesis, and meristem and stigma function (Cole et al., 2005; Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010; Kulich et al., 2010; Pecenková et al., 2011; Safavian and Goring, 2013; Wu et al., 2013; Safavian et al., 2015; Zhang et al., 2016). The growth arrest of pollen tubes in sec8, sec6, sec15a, and sec5a/sec5b single and double mutants (Cole et al., 2005; Hála et al., 2008) or following treatment with the EXO70 inhibitor ENDOSIDIN2 (Zhang et al., 2016), and of root hairs in maize root hairless1 (rth1) SEC3 mutant (Wen et al., 2005), the inhibition of seed coat deposition in the sec8 and exo70A1 mutants (Kulich et al., 2010), and stigmatic papillae function in exo70A1 mutant plants (Safavian and Goring, 2013; Safavian et al., 2015) have implicated the exocyst in polarized exocytosis in plants. Given their function, it was likely that exocyst subunits could be used as markers for polarized exocytosis. Furthermore, it could also be hypothesized that, by studying the mechanisms that underlie the association of the exocyst complex with the plasma membrane, it should be possible to identify mechanisms underlying the regulation of polarized exocytosis (Guan et al., 2013). Moreover, since the interaction of exocytotic vesicles with the exocyst is transient and marks the site(s) of active exocytosis in the membrane, fluorescently labeled exocyst subunits could be used as markers for exocytosis while avoiding potential imaging artifacts stemming from pollen tube tips densely populated with vesicles.We have shown previously that the ROP effector ICR1 can interact with SEC3a and that ROPs can recruit SEC3a-ICR1 complexes to the plasma membrane (Lavy et al., 2007). However, ICR1 is not expressed in pollen tubes, suggesting that SEC3a membrane binding in these cells is likely dependent on other factors. In yeast, the interaction of Sec3p and Exo70p subunits with the plasma membrane is critical for exocyst function (He and Guo, 2009). It has been shown that the membrane binding of both Sec3p and Exo70p is facilitated by their interaction with phosphatidylinositol 4,5-bisphosphate (PIP2; He et al., 2007; Zhang et al., 2008). The yeast Exo70p interacts with PIP2 via a number of positively charged residues distributed along the protein, with the highest number located at the C-terminal end (Pleskot et al., 2015). It has been suggested that yeast Sec3p interacts with PIP2 through N-terminal basic residues (Zhang et al., 2008). These data were further corroborated by x-ray crystallography studies, which showed that the yeast Sec3p N-terminal region forms a Pleckstrin homology (PH) domain fold (Baek et al., 2010; Yamashita et al., 2010), a PIP2 interaction motif (Lemmon, 2008).The localization of the exocyst subunits has been addressed in several studies. In Arabidopsis root hairs and root epidermis cells, SEC3a-GFP was observed in puncta distributed throughout the cell (Zhang et al., 2013). Studies on the Arabidopsis EXO70 subunits EXO70E2, EXO70A1, and EXO70B1 revealed them to be localized in distinct compartments that were termed exocyst-positive organelles (Wang et al., 2010). The exocyst-positive organelles, visualized mostly by ectopic expression, were shown to be cytoplasmic double membrane organelles that can fuse with the plasma membrane and secrete their contents to the apoplast in an exosome-like manner. It is not yet known whether other exocyst subunits also are localized to the same organelles and what might be the biological function of this putative compartment (Wang et al., 2010; Lin et al., 2015). In differentiating xylem cells, two coiled-coil proteins termed VESICLE TETHERING1 and VESICLE TETHERING2 recruit EXO70A1-positive puncta to microtubules via the GOLGI COMPLEX2 protein (Oda et al., 2015). Importantly, the functionality of the XFP fusion proteins used for the localization studies described above was not tested, and in most cases, the fusion proteins were overexpressed. Therefore, the functional localization of the exocyst is still unclear.Here, we studied the function and subcellular localization of the Arabidopsis exocyst SEC3a subunit using a combination of genetics, cell biology, biochemistry, and structural modeling approaches. Our results show that SEC3a is essential for the determination of pollen tube tip germination site and growth. Partial complementation of sec3a resulted in the formation of pollen with multiple pollen tube tips. In Arabidopsis growing pollen tubes, SEC3a localization is dynamic, and it accumulates in domains of polarized secretion, at or close to the tip plasma membrane (PM). Labeling of GFP-SEC3-expressing pollen with FM4-64 revealed the spatial correlation between polarized exocytosis and endocytic recycling. Furthermore, the association of SEC3a with PM at the tip marks the direction of tube elongation and positively correlates with the deposition of PI-labeled pectins and specific anti-esterified pectin antibodies in the cell wall. In tobacco (Nicotiana tabacum), the mechanisms underlying SEC3a interaction with the PM and its subcellular distribution depend on pollen tube growth mode and involve the interaction with PIP2 through the N-terminal PH domain. Collectively, our results highlight the function of SEC3a as a polarity determinant that links between polarized exocytosis and cell morphogenesis. The correlation between exocyst function and distribution in pollen tubes provides an explanation for some of the current discrepancies regarding the localization of exocytosis.  相似文献   

18.
In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and potassium cyanide. Brefeldin A blocks membrane trafficking and inhibits exocytosis in pollen tubes; it also leads to the degradation of the actin fringe and the formation of an aggregate of filamentous actin at the base of the clear zone. Latrunculin B, which depolymerizes filamentous actin, markedly slows growth but allows focused pectin deposition to continue. Of note, the locus of deposition shifts frequently and correlates with changes in the direction of growth. Finally, potassium cyanide, an electron transport chain inhibitor, briefly stops growth while causing the actin fringe to completely disappear. Pectin deposition continues but lacks focus, instead being delivered in a wide arc across the pollen tube tip. These data support a model in which the actin fringe contributes to the focused secretion of pectin to the apical cell wall and, thus, to the polarized growth of the pollen tube.Pollen tubes provide an excellent model for studying the molecular and physiological processes that lead to polarized cell growth. Because all plant cell growth results from the regulated yielding of the cell wall in response to uniform turgor pressure (Winship et al., 2010; Rojas et al., 2011), the cell wall of the pollen tube must yield only at a particular spot: the cell apex, or tip. To accomplish the extraordinary growth rates seen in many species, and to balance the thinning of the apical wall due to rapid expansion, the pollen tube delivers prodigious amounts of wall material, largely methoxylated pectins, to the tip in a coordinated manner. Recent studies suggest that the targeted exocytosis increases the extensibility of the cell wall matrix at the tip, which then yields to the existing turgor pressure, permitting the tip to extend or grow (McKenna et al., 2009; Hepler et al., 2013). There are many factors that influence exocytosis in growing pollen tubes; in this study, we investigate the role of the apical actin fringe.For many years, it has been known that an actin structure exists near the pollen tube tip, yet its exact form has been a matter of some contention (Kost et al., 1998; Lovy-Wheeler et al., 2005; Wilsen et al., 2006; Cheung et al., 2008; Vidali et al., 2009; Qu et al., 2013). The apical actin structure has been variously described as a fringe, a basket, a collar, or a mesh. Using rapid freeze fixation of lily (Lilium formosanum) pollen tubes followed by staining with anti-actin antibodies, the structure appears as a dense fringe of longitudinally oriented microfilaments, beginning 1 to 5 µm behind the apex and extending 5 to 10 µm basally. The actin filaments are positioned in the cortical cytoplasm close to the plasma membrane (Lovy-Wheeler et al., 2005). More recently, we used Lifeact-mEGFP, a probe that consistently labels this palisade of longitudinally oriented microfilaments in living cells (Vidali et al., 2009; Fig. 1A, left column). For the purposes of this study, we will refer to this apical organization of actin as a fringe.Open in a separate windowFigure 1.The actin fringe and the thickened pollen tube tip wall are stable, although dynamic, structures during pollen tube growth. A, The left column shows a pollen tube transformed with Lifeact-mEGFP imaged with a spinning-disc confocal microscope. Maximal projections from every 15 s are shown. The right column shows epifluorescence images of a pollen tube stained with PI. Again, images captured every 15 s are shown. Bars = 10 μm. B, The data from the pollen tube in A expressing Lifeact-mEGFP were subjected to kymograph analysis using an 11-pixel strip along the image’s midline. C, The first three frames from the pollen tube in A and B were assigned the colors red, blue, and green, respectively, and then overlaid. Areas with white show the overlap of all three. The fringe is stable, but most of its constituent actin is not shared between frames.Many lines of evidence demonstrate that actin is required for pollen tube growth. Latrunculin B (LatB), which blocks actin polymerization, inhibits pollen tube growth and disrupts the cortical fringe at concentrations as low as 2 nm. Higher concentrations are needed to block pollen grain germination and cytoplasmic streaming (Gibbon et al., 1999; Vidali et al., 2001). Actin-binding proteins, including actin depolymerizing factor-cofilin, formin, profilin, and villin, and signaling proteins, such as Rho-of-Plants (ROP) GTPases and their effectors (ROP interacting crib-containing proteins [RICs]), also have been shown to play critical roles in growth and actin dynamics (Fu et al., 2001; Vidali et al., 2001; Allwood et al., 2002; Chen et al., 2002; Cheung and Wu, 2004; McKenna et al., 2004; Gu et al., 2005; Ye et al., 2009; Cheung et al., 2010; Staiger et al., 2010; Zhang et al., 2010a; Qu et al., 2013; van Gisbergen and Bezanilla, 2013).Our understanding of the process of exocytosis and pollen tube elongation has been influenced by ultrastructural images of pollen tube tips, which reveal an apical zone dense with vesicles (Cresti et al., 1987; Heslop-Harrison, 1987; Lancelle et al., 1987; Steer and Steer, 1989; Lancelle and Hepler, 1992; Derksen et al., 1995). It has long been assumed that these represent exocytotic vesicles destined to deliver new cell wall material. This model of polarized secretion has been challenged in recent years in studies using FM dyes. Two groups have suggested that exocytosis occurs in a circumpolar annular zone (Bove et al., 2008; Zonia and Munnik, 2008). However, other studies, using fluorescent beads attached to the cell surface, indicate that the maximal rate of expansion, and of necessity the greatest deposition of cell wall material, occurs at the apex along the polar axis of the tube (Dumais et al., 2006; Rojas et al., 2011). Similarly, our experiments with propidium iodide (PI; McKenna et al., 2009; Rounds et al., 2011a) and pectin methyl esterase fused to GFP (McKenna et al., 2009) show that the wall is thickest at the very tip and suggest that wall materials are deposited at the polar axis, consistent with the initial model of exocytosis (Lancelle and Hepler, 1992). Experiments using tobacco (Nicotiana tabacum) pollen and a receptor-like kinase fused to GFP also indicate that exocytosis occurs largely at the apical polar axis (Lee et al., 2008).Many researchers argue that apical actin is critical for exocytosis (Lee et al., 2008; Cheung et al., 2010; Qin and Yang, 2011; Yan and Yang, 2012). More specifically, recent work suggests that the fringe participates in targeting vesicles and thereby contributes to changes in growth direction (Kroeger et al., 2009; Bou Daher and Geitmann, 2011; Dong et al., 2012). In this article, using three different inhibitors, namely brefeldin A (BFA), LatB, and potassium cyanide (KCN), we test the hypothesis that polarized pectin deposition in pollen tubes requires the actin fringe. Our data show that during normal growth, pectin deposition is focused to the apex along the polar axis of the tube. However, when growth is modulated, different end points arise, depending on the inhibitor. With BFA, exocytosis stops completely, and the fringe disappears, with the appearance of an actin aggregate at the base of the clear zone. LatB, as shown previously (Vidali et al., 2009), incompletely degrades the actin fringe and leaves a rim of F-actin around the apical dome. Here, we show that, in the presence of LatB, pectin deposition continues, with the focus of this activity shifting in position frequently as the slowly elongating pollen tube changes direction. With KCN, the actin fringe degrades completely, but exocytosis continues and becomes depolarized, with pectin deposits now occurring across a wide arc of the apical dome. This dome often swells as deposition continues, only stopping once normal growth resumes. Taken together, these results support a role for the actin fringe in controlling the polarity of growth in the lily pollen tube.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号