首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Increased levels of nitrogen (N) deposition lead to enhanced N contents and reduced productivity of many bryophyte species. This study aimed at elucidating the mechanisms by which enhanced N uptake may cause growth reduction of bryophytes, focusing on the effects of N addition on carbon (C) metabolism of bryophytes. METHODS: Plantlets of Thuidium tamariscinum and Hylocomium splendens were fertilized with NH(4)NO(3) (N load equalling 30 kg ha(-1) year(-1)) for 80 d, including a pulse labelling experiment with (13)CO(2) to dissect the partitioning of carbon in response to N addition. KEY RESULTS: Growth of T. tamariscinum was not affected by N addition, while H. splendens showed a trend towards growth reduction. Total N concentration was significantly increased by N addition in H. splendens, a significant increase in amino acid-N was found in T. tamariscinum only. In both bryophyte species, a reduction in concentration of lipids, the greatest C storage pool, as well as markedly enhanced turnover rates of C storage pools in fertilized plants were observed. CONCLUSIONS: The results suggest that growth reduction of H. splendens under high levels of N deposition may be caused by enhanced synthesis of N-containing organic compounds, most probably of cell wall proteins. Disturbance of cellular C metabolism, as indicated by enhanced C pool turnover, may further contribute to the decline in productivity of H. splendens.  相似文献   

2.
The present research investigates the possibility that 2 weak urea-type cytokinins, the N,N′-bis-(1-naphthyl)urea and the N,N′-bis-(2-naphthyl)urea, enhance adventitious root formation. The rooting activity was assessed using the stem slice test, the mung bean rooting test and the rooting of apple microcuttings. The two compounds influenced the adventitious rooting process differently as regards the bioassay used. In the stem slice test, in the presence of exogenous auxin, both compounds enhanced the rooted slice percentage. In mung bean shoots, the N,N′-bis-(1-naphthyl)urea enhanced the root formation at the lowest concentration used (0.01 μM) while the N,N′-bis-(2-naphthyl)urea enhanced rooting at higher concentrations. In the rooting test of apple microcuttings the N,N′-bis-(1-naphthyl)urea and the N,N′-bis-(2-naphthyl)urea slightly enhanced only the mean root number per microcutting.  相似文献   

3.
To study intraspecific differences in N utilization in response to enhanced UV-B radiation, field experiments were conducted on two Erigeron breviscapus populations (Huguo and Cangshan), which were respectively obtained from low altitude (UV-B sensitive) and high altitude (UBV-B resistant).The effects of soil nitrogen (N) application (0, 15, 30, 45 g m2) on free amino acid content, the activities of nitrate reductase (NR) and glutamine synthetase (GS), total nitrogen content and N mass in leaves were determined under enhanced UV-B radiation (5 kJ m2) for both populations. The results showed that under enhanced UV-B radiation: (1) increases in total N contents in leaves of the Huguo and Cangshan populations correlated with the amount of N applied. Additionally, leaf biomass of Huguo treated with 15 g m?2 N application and Cangshan with 30 g m?2 N application were higher than that of other treatments. Leaf N masses were highest in both E. breviscapus populations treated with 30 g m?2 N; (2) increases in contents of free amino acids in leaves of both E. breviscapus populations correlated with the amount of applied nitrogen; (3) increases of NR activity in leaves correlated with the amount of applied nitrogen; (4) GS activity in leaves of the Huguo and Cangshan E. breviscapus populations were highest with respective N applications of 15 g m?2 N and 30 g m?2 N. In general, under enhanced UV-B radiation, N application might affect NR and GS and change free amino acid content, resulting in changes in total nitrogen content, biomass and N mass. The optimal amount of supplemental N for N accumulation in E. breviscapus was 30 g m?2 N under enhanced UV-B radiation.  相似文献   

4.
The production and secretion of streptokinase using OmpA signal sequence in E. coli was enhanced by removing the 13 N-terminal amino acids (SK(N13). The secretion level of SK(N13 protein into the extracellular medium was two times higher than that of wild-type streptokinase. About 4500 IU of SK(N13 protein per 1 ml LB-ampicillin medium was secreted into extracellular medium at 12 hours after induction. Fully active and enhanced extracellular preparation of the mutant streptokinase may be a potential alternative source for the simple downstream processing  相似文献   

5.
The increasing concentration of atmospheric carbon dioxide (CO2) is expected to lead to enhanced competition between plants and microorganisms for the available nitrogen (N) in soil. Here, we present novel results from a 15N tracing study conducted with a sheep‐grazed pasture soil that had been under 10 years of CO2 enrichment. Our study aimed to investigate changes in process‐specific gross N transformations in a soil previously exposed to an elevated atmospheric CO2 (eCO2) concentration and to examine indicators for the occurrence of progressive nitrogen limitation (PNL). Our results show that the mineralization–immobilization turnover (MIT) was enhanced under eCO2, which was driven by the mineralization of recalcitrant organic N. The retention of N in the grassland was enhanced by increased dissimilatory NO3? reduction to NH4+ (DNRA) and decreased NH4+ oxidation. Our results indicate that heterotrophic processes become more important under eCO2. We conclude that higher MIT of recalcitrant organic N and enhanced N retention are mechanisms that may alleviate PNL in grazed temperate grassland.  相似文献   

6.
小麦从开花至成熟,其根、茎和叶中的N素不断地进行着分配和再分配,主要是向穗子输出。成熟时穗N含量占植株总N的82%。在总N净输出的同时各营养器官也有相当程度的对当前土壤N的净吸收。在籽粒充实阶段用BA处理叶式穗均影响营养器官及穗子的N素吸收、分配和再分配。  相似文献   

7.
The present study addresses the hypothesis that enhanced expression of glutamine synthetase (GS) in transgenic poplar, characterized by the ectopic expression of pine cytosolic GS, results in an enhanced efficiency of nitrogen (N) assimilation and enhanced growth. Transgenic and control poplar were supplied with low and high N levels and the role of ectopic expression of the pine GS in growth and N assimilation was assessed by using amino acid analysis, (15)N enrichment, biochemical analyses, and growth measurements. While leaves of transgenic poplar contained 85% less (P < 0.01) free ammonium than leaves of nontransgenic control plants, leaves of transgenics showed increases in the levels of free glutamine and total free amino acids. Transgenic poplar lines also displayed significant increases in growth parameters when compared with controls grown under both low (0.3 mm) and high (10 mm) nitrate conditions. Furthermore, (15)N-enrichment experiments showed that 27% more (P < 0.05) (15)N was incorporated into structural compounds in transgenic lines than in nontransgenic controls. Using the methods described here, we present direct evidence for increased N assimilation efficiency and growth in GS transgenic lines.  相似文献   

8.
Effect of nitrogen (N) deficiency on antioxidant status and Cd toxicity in rice seedlings was investigated. N deficiency resulted in a reduction of shoot growth but not root growth. The contents of N-containing compounds such as nitrate, chlorophyll, and protein decreased in leaves of rice seedlings grown under N deficiency. Accumulation of abscisic acid and H2O2 in leaves was induced by N deficiency. The content of ascorbate and the activities of ascorbate peroxidase, glutathione reductase, and catalase in N-deficient leaves were lower than their respective control leaves. However, glutathione content was not affected and superoxide dismutase activity was increased by N deficiency. Cd toxicity in N-deficient seedlings was more pronounced than that in N-sufficient ones. Pretreatment with ascorbate or L-galactono-1,4-lactone, a biosynthetic precursor of ascorbate resulted in a reduction of Cd toxicity enhanced by N deficiency. N deficiency also resulted in an enhancement of Cd uptake in rice seedlings. The possible mechanism of Cd toxicity enhanced by N deficiency is discussed.  相似文献   

9.
? Premise of the Study: Plant communities may be influenced by toxic secondary metabolites or enhanced plant growth from plant-symbiont interactions. The C:N hypothesis predicts that carbon or nitrogen constrains plant secondary metabolite production, but it does not consider compounds produced by plant symbionts. Locoweeds are legumes that can have fungal endophyte alkaloid (swainsonine [SWA]) production, which causes livestock poisoning. We studied four locoweed taxa to test whether average SWA concentrations influenced SWA positive dose responses to N fertilizer. ? Methods: We measured locoweed leaf SWA, pigment concentrations and photosynthetic activity, and plant biomass dose responses to N supplementation for 3 mo in two greenhouse experiments. ? Key Results: Leaf photosynthesis, leaf pigment concentrations, and plant biomass had positive, unsaturated dose responses across tested N doses. Although N enhanced primary growth, two moderate-SWA taxa (Astragalus mollissimus var. bigelovii and Oxytropis sericea) had negative SWA dose responses to increasing N, the high-SWA taxon (A. moll. var. mollissimus) had no SWA change, and the very low-SWA taxon (A. moll. var. matthewsii) had a transient positive dose response. ? Conclusions: Supplemented N led to positive dose responses for plant biomass and leaf photosynthesis and pigments, but SWA dose responses differed across locoweed taxa and time. At N levels that enhanced plant growth and reduced antioxidant protective systems, fungal endophyte alkaloid production was not strongly influenced. Production of SWA may be more strongly influenced by factors other than C:N supply (e.g., seasonality, plant age) in the locoweed-endophyte-Rhizobium complex.  相似文献   

10.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

11.
Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.  相似文献   

12.

Background

CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively.

Results

Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure.

Conclusion

Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.  相似文献   

13.
Animal-plant-soil nutrient relationships on Marion Island (Subantarctic)   总被引:4,自引:0,他引:4  
V. R. Smith 《Oecologia》1978,32(2):239-253
Summary Manuring by the many seals and seabirds forms the major source of N and P to the Marion Island terrestrial ecosystem and plants at manured sites exhibit enhanced vitality and increased N and P contents in their leaf tissue and saps. A similar effect results from small applications of NPK fertilizer. Non-manured soils possess very low levels of available N but substantial quantities of organic N.  相似文献   

14.
The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO?. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO? stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO? as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.  相似文献   

15.
Rates of protein turnover have been measured on a statistical basis in Duchenne muscular dystrophy and normal skin fibroblasts populations in vitro. At comparable numbers of cumulative population doublings, protein synthesis was significantly reduced by about 24% in DMD fibroblasts as compared to normal fibroblasts (p less than 0.01, N = 12). Degradation of short lived proteins was significantly enhanced by about 60% (p less than 0.05, N = 18), and the degradation of long lived proteins was significantly increased by about 28% (p less than 0.05, N = 18) in DMD fibroblast populations in vitro. The enhanced degradation of long lived proteins in DMD fibroblasts can be reduced to basal levels of degradation by the use of the protease inhibitors leupeptin and Ep475 (p less than 0.05, N = 9).  相似文献   

16.
Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC—potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L?1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes.  相似文献   

17.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

18.
《植物生态学报》2016,40(11):1124
Aims Our purpose was to explore the effects of nitrogen addition on foliar nitrogen (N), phosphorus (P) and N:P stoichiometry and to assess their differences among different species and functional groups.
Methods N addition experiment has been conducted in a subtropical evergreen broad-leaved forest in Mount Wuyi, Fujian Province since 2011. Foliar concentrations of nitrogen and phosphorus were measured and foliar stoichiometry was estimated in tree, shrub, herb, fern and moss species following the N addition treatments from 2013 to 2015.
Important findings Generally, foliar N increased for almost all species and herbaceous plants are much more sensitive than trees and shrubs under N addition. Foliar N of Castanopsis carlesii, Amomum villosum, Woodwardia japonica increased significantly under N addition. Foliar P for most species was sensitive to the N addition. Foliar P of herbaceous plants increased significantly but foliar P of Leucobryum chlorophyllosum decreased significantly. The results showed the subtropical evergreen forest in Mount Wuyi was mainly limited by P and mean foliar N:P ratios enhanced from 18.67 to 19.72 under N addition, indicating that the strength of P limitation was enhanced by N addition. N:P ratios of the dominant arboreal species in the communities tended to be stable, while N:P ratios of herbaceous plants and shrubs increased. The changes in N:P ratios were mainly determined by P dynamics instead of N dynamics under N addition, and our results confirmed that increasing N availability can affect P cycling.  相似文献   

19.
Scalp topography of giant SEPs to median nerve stimulation was studied in 4 patients with cortical myoclonus of various etiology. The positive peak (P30) at the contralateral parietal area was simultaneously accompanied by a negative peak at the frontal area (N30), and at least one of these two peaks was enhanced in 2 patients. Another positive peak (P25) and a negative peak (N35) were also identified at the peri-rolandic area with different latency from P30 and N30, respectively, in all patients. N35 was enhanced in 3 patients, and P25 in 2 patients. It is concluded that, as seen in normal subjects, tangential (P30-N30) and radial (P25 and N35) components of SEPs are most likely distinguishable in giant SEPs, and that either one or both of those components is enhanced in different ways depending on the patients.  相似文献   

20.
该文以福建武夷山亚热带常绿阔叶林为研究对象, 通过设置3个氮(N)添加梯度的野外实验, 研究了群落内乔木植物、灌木植物、草本植物、蕨类植物和苔藓植物叶片N、磷(P)化学计量特征对N沉降的响应, 以及不同功能群和物种化学计量特征对N沉降响应的差异。在已开展5年人工N添加的样地内, 3年的监测结果表明: N添加整体上提高了植物叶片N含量, 草本层植物叶片N含量对N添加的响应比乔木层和灌木层植物更加敏感, 优势种米槠(Castanopsis carlesii)、草本植物砂仁(Amomum villosum)、蕨类植物狗脊(Woodwardia japonica)的叶片N含量显著增加。N添加整体上增加了植物叶片P含量, 乔木层植物和灌木层植物叶片P含量没有显著变化, 草本层植物叶片P含量显著增加, 而苔藓植物叶片P含量显著减少。N添加促使武夷山亚热带常绿阔叶林植物叶片N:P由18.67上升至19.72, 加剧了植物生长的P限制; 乔木物种N:P的变化较灌木和草本物种更加稳定。N添加条件下, 植物叶片N:P的变化主要受到叶片P含量而非N含量变化的影响, N添加对生态系统P循环的影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号