首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon absorption by wheat (Triticum aestivum L.)   总被引:3,自引:0,他引:3  
Rafi  Malik M.  Epstein  Emanuel 《Plant and Soil》1999,211(2):223-230
Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

3.
The technique of EDTA-enhanced phloem exudation (King and Zeevaart, 1974: Plant Physiol. 53, 96–103) was evaluated with respect to the collection and identification of amino acids exported from senescing wheat leaves. Whilst the characteristics of the exudate collected conform with many of the accepted properties of phloem exudate, unexpectedly high molar proportions of phenylalanine and tyrosine were observed. By comparing exudation into a range chelator solutions with exudation into water, the increased exudation of phenylalanine and tyrosine relative to the other amino acids occurring when ethylene-diaminetetracetic acid was used, was considered to an artefact.In plants thought to be relying heavily on mobilisation of protein reserves to satisfy the nitrogen requirements of the grain, the major amino acids present in flag-leaf phloem exudate were glutamate, aspartate, serine, alanine and glycine. Only small proportions of amides were present until late in senescence when glutamine became the major amino acid in phloem exudate (25 molar-%). Glutamine was always the major amino acid in xylem sap (50 molar-%).The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.3) and asparagine synthetase (EC 5.3.5.4) were measured in the flag leaf throughout the grain-filling period. Glutamine synthetase and glutamate-synthase activities declined during this period. Glutamate-dehydrogenase activity was markedly unchanged despite variation in the number of multiple forms visualised after gel electrophoresis. The activity of the enzyme reached a peak only very late in the course of senescence of the flag leaf. No asparagine-synthetase activity could be detected in the flag leaf during the grain-filling period.II. Peoples et al. (1980)  相似文献   

4.
The flag leaf of wheat was examined for changes in quantity and activity of ribulose-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39), in the proteolytic degradation of RuBPCase and other native proteins, and in the ultrastructure of the leaf cells during grain development. Proteolytic degradation of RuBPCase at pH 4.8 increased until 8–10 d after anthesis, then declined, and increased again 16–18 d after anthesis. The second peak coincided with the onset of a preferential loss of immunologically recognizable RuBPCase. The specific activity and number of active sites per molecule of RuBPCase did not change during senescence. Examination of ultrastructure with the electron microscope showed little change in the appearance of the mitochondria as the flag leaf aged. Prominent cristae were still evident 35 d after anthesis. In contrast, the chloroplasts showed a progressive disruption of the thylakoid structure and an increasing number of osmiophilic glubules. The double membrane envelope surrounding the chloroplast appeared intact until at least 20 d after anthesis. The tonoplast also appeared intact up to 20 d. At later stages of senescence of the leaf the outer membrane of the chloroplast adjacent to the tonoplast appeared to break but the inner membrane of the envelope appeared intact until at least 35 d after anthesis.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase (EC. 4.1.1.39) I=Waters et al. 1980  相似文献   

5.
The wheat (Triticum aestivum L.) leaf proteome   总被引:1,自引:0,他引:1  
The wheat leaf proteome was mapped and partially characterized to function as a comparative template for future wheat research. In total, 404 proteins were visualized, and 277 of these were selected for analysis based on reproducibility and relative quantity. Using a combination of protein and expressed sequence tag database searching, 142 proteins were putatively identified with an identification success rate of 51%. The identified proteins were grouped according to their functional annotations with the majority (40%) being involved in energy production, primary, or secondary metabolism. Only 8% of the protein identifications lacked ascertainable functional annotation. The 51% ratio of successful identification and the 8% unclear functional annotation rate are major improvements over most previous plant proteomic studies. This clearly indicates the advancement of the plant protein and nucleic acid sequence and annotation data available in the databases, and shows the enhanced feasibility of future wheat leaf proteome research.  相似文献   

6.
The activity of a range of endo- and exopeptidase enzymes have been measured in the glumes, flag leaf and stem during the period of grain development in wheat. The enzymes show a sequential pattern of appearance with activity peaks occurring at a number of intervals from anthesis until just prior to the cessation of grain growth. Of the enzymes studied only the haemoglobin- and casein-degrading activity and alanylglycine-dipeptidase activity increased during the period of rapid protein loss, while aminopeptidase, carboxypeptidase and leucyltyrosine dipeptidase reached maximum activity prior to this period.  相似文献   

7.
Drought tolerant endophytic actinobacteria Streptomyces coelicolor DE07, S. olivaceus DE10 and Streptomyces geysiriensis DE27 were isolated from cultivated plants of arid and drought affected regions of Rajasthan, India. These isolates exhibited plant growth promotion traits and intrinsic water stress tolerance from ?0.05 to ?0.73 MPa. Maximum auxin production was observed in majority of actinobacterial cultures in the logarithmic to stationary phase of growth. Significant enhancement of wheat seedling vigour was recorded by the inoculation of these endophytic actinobacteria. S. olivaceus DE10 recorded maximum accumulation of indole 3-acetic acid (84.34?μg?mg?1 protein). Culture and cell-free extract of the endophytes was applied on to wheat seeds to assess the effect on growth in water-stressed soil. Maximum yield was recorded with the inoculation of S. olivaceus DE10 culture (492.77?kg?ha?1) and cell-free extract (262.31?kg?ha?1). Co-inoculation of S. olivaceus DE10?+?S. geysiriensis DE27 recorded highest yield of 550.09?kg?ha?1 while their cell-free extract yielded 524.92?kg?ha?1. Overall, wheat seeds treated with cultures showed better plant growth and yield in comparison to control. Direct coating of cultures on seeds yielded better performance than cell-free extract coated on seeds and co-inoculation of cultures or cell-free extract proved better than single culture inoculations. Production of phytohormones, plant growth promotion traits combined with water stress tolerance potential in these endophytic actinobacteria played a cumulative synergistic role that supported enhanced plant growth promotion of wheat in the stressed soil.  相似文献   

8.

Background and aims

This study investigated the effect of cyanobacterial inoculants on salt tolerance in wheat.

Methods

Unicyanobacterial crusts of Nostoc, Leptolyngbya and Microcoleus were established in sand pots. Salt stress was targeted at 6 and 13 dS m?1, corresponding to the wheat salt tolerance and 50 % yield reduction thresholds, respectively. Germinated wheat seeds were planted and grown for 14 (0 and 6 dS m?1) and 21 (13 dS m?1) days by which time seedlings had five emergent leaves. The effects of cyanobacterial inoculation and salinity on wheat growth were quantified using chlorophyll fluorescence, inductively coupled plasma-optical emission spectrometry and biomass measurements.

Results

Chlorophyll fluorescence was negatively affected by soil salinity and no change was observed in inoculated wheat. Effective photochemical efficiency correlated with a large range of plant nutrient concentrations primarily in plant roots. Inoculation negatively affected wheat biomass and nutrient concentrations at all salinities, though the effects were fewer as salinity increased.

Conclusions

The most likely explanation of these results is the sorption of nutrients to cyanobacterial extracellular polymeric substances, making them unavailable for plant uptake. These results suggest that cyanobacterial inoculation may not be appropriate for establishing wheat in saline soils but that cyanobacteria could be very useful for stabilising soils.  相似文献   

9.
Lead (Pb) is an environmental pollutant extremely toxic to plants and other living organisms including humans. To assess Pb phytotoxicity, experiments focusing on germination of wheat seeds were germinated in a solution containing Pb (NO(3))(2) (0.05; 0.1; 0.5; 1g/L) during 6 days. Lead accumulation in seedlings was positively correlated with the external concentrations, and negatively correlated with morphological parameters of plant growth. Lead increased lipid peroxidation, enhanced soluble protein concentrations and induced a significant accumulation of proline in roots. Esterase activity was enhanced in the presence of lead, whereas α-amylase activity was significantly inhibited. Antioxidant enzymes activities, such as, ascorbate peroxidase, peroxidase, superoxide dismutase, catalase and glutathione S-transferase were generally significantly increased in the presence of lead in a dose-dependent manner. The present results thus provide a model system to screen for natural compounds able to counteract the deleterious effects of lead.  相似文献   

10.
Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification   总被引:1,自引:0,他引:1  
A procedure has been developed for the cryopreservation of wheat female gametes. The procedure involves loading the cells with 25% concentrated vitrification solution consisting of 30% glycerol, 10% sucrose, 120 mM ascorbic acid (AA) and 5% propylene glycol (PG), dehydration in 80% concentrated vitrification solution, droplet vitrification and storage in liquid nitrogen, unloading and rehydration of the cells by gradual addition of isolation solution. Supplementation with AA significantly increased the proportion of viable egg cells after de- and rehydration. During the early phase of rehydration AA reduced the probability of membrane damage caused by rapid water uptake. Maintaining the temperature of the cells at 0°C during the de- and rehydration processes increased cell survival. Microscopic examination of the semi-thin sections of untreated and viable cryopreserved cells revealed that the vitrification process might cause changes in cell structure.  相似文献   

11.
A. W. Wheeler 《Planta》1973,112(2):129-135
Summary The basal fifth of the lamina, containing most of the gibberellin of young leaves, was the only part of the lamina that elongated. When the base of the lamina stopped elongating the gibberellin apparently moved up the lamina, but the leaf sheath still contained some gibberellin and continued to elongate. Old, fully elongated, leaves contained most auxin and tryptophan in the apical fifth of the lamina that was dying; young leaves contained insignificant amounts of auxin. Leaves contained two cytokinins; generally most cytokinin activity occurred in the apical fifth of leaves. Cytokinin activity was also detected in guttation drops and in ethanolic washings from leaf tips.  相似文献   

12.
The liberation of phosphoric acid from glucose-1-phosphate, catalyzed by phosphorylase was studied in wheat growing in sand cultures with an addition of humic acid and hymatomelanic acid. It was found that the phosphorylase activity of tissues changes under the influence of humic acid very significantly. The maximum activity is reached at 10 mg humic acid/liter. The overground organs are less sensitive, as a stimulation effect is reached there only at 400 mg/liter. The effect of hymatomelanic acid is negligible in comparison with that of humic acid. The observed phenomenon is related to the effect of humus substances on the equilibrium of saccharides and on the distribution of dry matter in the plant.  相似文献   

13.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

14.
Wheat varietal autotoxicity and varietal allelopathy were assessed based on plant extract and root exudate bioassays under laboratory conditions. Aqueous extract of wheat differed in varietal autotoxicity and varietal allelopathy, inhibiting wheat germination by 2–21%, radicle growth by 15–30%, and coleoptile growth by 5–20%, depending on the combination of the receiver and donor. Extracts of cv Triller or cv Currawong were more allelopathic to other wheat varieties than cv Batavia and cv Federation. Triller extract was more autotoxic than Federation. Assessment of root exudates by the equal-compartment-agar-method further identified the significant differences in varietal autotoxicity and varietal allelopathy of root exudates between wheat varieties, with root exudates of Triller or Batavia showing stronger autotoxic or allelopathic effects than Currawong or Federation. The varietal autotoxicity and allelopathy of root exudates also showed a characteristic radial inhibitory pattern in the agar growth medium. These results suggest that careful selection of suitable wheat varieties is necessary in a continuous cropping system in order to minimize the negative impacts of varietal allelopathy and varietal autotoxicity. Factors affecting autotoxicity in the field and strategies in autotoxicity management are discussed. Resposible Editor: Philippe Hinsinger  相似文献   

15.
Microspores were isolated from wheat (Triticum aestivum L.) spikes of various genotypes following an effective pretreatment that induced microspore embryogenesis. The isolated microspores were cultured with or without live ovaries, and with or without medium pre-conditioned by ovaries for varying periods of time. Live ovaries alone increased androgenic embryoid yields up to 4.5-fold over the control for microspores isolated from responsive genotypes. While live ovary co-culture alone was not effective for microspores isolated from recalcitrant genotypes, the addition of medium preconditioned by ovaries to microspore cultures increased embryoid yield by more than 100-fold. Without ovary-conditioned medium, no embryoids could be obtained from some recalcitrant genotypes. Ovary-conditioned medium apparently functions to increase embryoid yields by providing essential substance(s) for elaboration of the embryogenic program already triggered during pretreatment.  相似文献   

16.
Five salinity tolerant Azotobacter strains i.e., ST3, ST6, ST9, ST17 and ST24 were obtained from saline soils. These Azotobacter strains were used as inoculant for wheat variety WH157 in earthen pots containing saline soil under pot house conditions, using three fertilizer treatment doses i.e., control (no fertilizer, no inoculation), 90 Kg N ha−1 and 120 Kg N ha−1. Inoculation with salinity tolerant Azotobacter strains caused significant increase in total nitrogen, biomass and grain yield of wheat. Maximum increase in plant growth parameters were obtained after inoculation with Azotobacter strain ST24 at fertilization dose of 120 kg N ha−1 and its inoculation resulted in attaining 89.9 cms plant height, 6.1 g seed yield, 12.0 g shoot dry weight and 0.7 % total nitrogen. The survival of Azotobacter strain ST24 in the soil was also highest in all the treatments at 30, 60 and 90 days after sowing (DAS). However, the population of Azotobacter decreased on 90 DAS as compared to counts observed at 60 DAS at all the fertilization treatments.  相似文献   

17.
Protoplasts isolated from embryogenic suspension cultures of wheat (Triticum aestivum cv. Hartog) were electroporated in the presence of plasmid pEmuGN and/or pEmuPAT, which contained the reporter gene gus and selectable marker gene bar, respectively. Under optimised electroporation conditions, up to 0.9% of viable protoplasts displayed gus activity two days after electroporation. To select for phosphinothricin (PPT) resistant colonies, electroporated protoplasts were incubated for six weeks in a medium containing 10 g/ml PPT. The cells surviving the selection were maintained as individual colonies on solid medium or as suspension cultures. More than 60% of these colonies exhibited tolerance to 40 g/ml PPT when tested 10 months after initial selection. To date, 57 green plants have been regenerated from these colonies and 24 have been transferred to soil. Southern blot analyses of colonies and plants, using the bar gene sequence as the probe, confirmed transformation of the cells. Positive PAT assays of both regenerated colonies and plants indicated the presence of the bar gene product. These results provide a basis for the establishment of routine procedures for transformation of wheat by direct gene transfer into protoplasts.Abbreviations gus -glucuronidase - PAT phosphinothricin N-acetyltransferase - PPT phosphinothricin - MS Murashige and Skoog medium  相似文献   

18.
An Agropyron chromosome having a gene conferring blue color on the aleurone layer of the kernel endosperm causes a 15% increase in total grain protein content when it is added to the common wheat (2n=42) complement. In contrast, there is no effect of this chromosome on total protein content if it replaced part of a wheat chromosome. Endosperm protein components of isolines having blue aleurone due to the Agropyron chromosome being added (2n=44) or translocated (2n=42) were compared to normal nonblue isoline counterparts. Gliadin proteins separated by aluminum lactate (pH 3.2) polyacrylamide gel electrophoresis (PAGE) in one or two dimensions showed greater staining intensity for the blue addition isolines (2n=44) than nonblue (2n=42) isolines. However, the 42-chromosome blue isoline did not show increased protein staining over the nonblue isoline, but at least five protein differences were detected between the lines. SDS-PAGE showed that blue and nonblue differences were expressed primarily in the gliadins, but also in the glutenin, globulin, and albumin proteins.This research was supported by a D. F. Jones Postdoctoral Fellowship to K. M. Soliman and by Western Regional Project W-132, Genotype-environment interactions related to end-product uses in small grains.  相似文献   

19.
Summary Soil + charcoal (1∶3) carrier based and liquid cultures of Rhizobia were used to inoculate wheat seed cv. HD2329. The plants received 100 kg N in two equal splits and 60 kg P2O5 and 40 kg K20 ha−1. Inoculation with rhizobia had little effect on grain yield of wheat. Significant increase in straw yield and N-uptake occurred due to inoculation. A comparison of results of a similar experiment conducted during 1983–84, showed that inoculation with the same strains of rhizobia and application 50 kg N ha−1 as basal dressing, was more effective in increasing yield and N-uptake in wheat cv. HD2329. It appears reasonable to assume occurrence of nitrogen fixation by root nodule bacteria in rhizosphere of wheat.  相似文献   

20.
Plant regeneration was achieved from coleoptile tissue of wheat (Triticum aestivum L. cv. Kharachia-65). Coleoptiles (1.0 - 3.5 cm long) were excised from 2- to 5-d-old seedlings and cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D - 0.5, 2.5, and 5.0 mg dm-3). Cream, friable callus was obtained after 6 weeks of inoculation. This callus was sub-cultured on MS medium supplemented with 2,4-D (2.5 mg dm-3) and 5 % coconut water. After 6 weeks of sub-culturing white, cream or pale, friable, nodular callus was obtained. Plant regeneration occurred when this callus was sub-cultured on MS medium supplemented with 0.2 mg dm-3 1-naphthalene acetic acid + 1.0 mg dm-3 6-benzylaminopurine. For rooting, regenerated shoots or plantlets were transferred on MS medium supplemented with 0.5 mg dm-3 indole-3-acetic acid. Rooted plantlets were directly transferred into pots and grown under field conditions. Seed setting invariably occurred in all plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号