首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
福建闽江源自然保护区野生经济植物资源   总被引:4,自引:1,他引:3  
闽江源自然保护区位于福建省建宁县。区内有野生维管束植物168科635属1058种20亚种(或变种),按其经济用途分为11类,即纤维植物、鞣料植物、芳香植物、油脂植物、淀粉植物、观赏植物、蜜源植物、树脂及胶用植物、色素植物、药用植物和国家重点保护的珍稀濒危植物。本文还分析各属的区系成分,并对保护区植物资源的利用提出建议。  相似文献   

2.
植物资源是植物园存在和发展的基础,植物资源保育是植物园最基本的工作。以往的植物资源保育工作主要包括植物资源日常管护、繁殖和资源保育研究,此模式的局限性随着植物园的发展或植物园面临越来越多的挑战而日显突出。植物资源保育之创新,首先是拟保育资源的系统性选择,其次是已保育资源的运用,包括植物资源的基础研究与应用研究、开发与推广应用以及科普利用。  相似文献   

3.
蛋白质组技术已广泛应用于植物遗传、发育和生理生态等诸多生物学领域,主要研究植物的遗传多样性、植物发育、组织分化、植物对非生物逆境(包括高温、低温、高盐和干旱等)和生物逆境(病虫害)的适应机制和植物与微生物(根瘤共生体)相互作用机制。本文综述了微生物与植物互作的蛋白质组研究进展,包括有害和有益的相互作用,同时对植物蛋白质组学的发展前景进行了讨论。  相似文献   

4.
安徽宿州大方寺林区植物种类及其资源的初步调查   总被引:3,自引:0,他引:3  
大方寺位于淮北平原萄丘陵地带,天然次生林属于暖温带叶阔叶林。由于自然条件复杂,植物种类丰富,木本植物130余种,草本植物100余种;植被类型多种多样,主要群落为:青檀(Pterooeltis tatarinowii)、牡荆(Witex negundo)、华隐子草(Cleistogenes chinensis)群落,栓皮栎(Quercus wvriabilis)、五角枫(Acer mono)、牡荆(Vitex negundo)裂稃草(Schizachyrium brevifolium)群落和黄连木(Pistacia chinensis)、五角枫(Acer mono)、扁担杆(Creuia biloba)、沿阶草(Ophiopogon bodinievi)群落等三种。大方寺植物资源丰富,具有用材经济植物的约60余种,药用植物200余种,香料及密源植物10余种,纤维植物30余种,庭园观赏植物40余种。  相似文献   

5.
高原湿地纳帕海水生植物群落分布格局及变化   总被引:10,自引:0,他引:10  
肖德荣  田昆  袁华  杨宇明  李宁云  徐守国 《生态学报》2006,26(11):3624-3630
采用3S技术与植物群落研究法,对高原湿地纳帕海24a来的湿地植物群落分布格局及变化的研究结果表明:与24a前水生植物群落相比较。纳帕海水生植物群落类型、数量改变,原生群落不断减少或消失,耐污、喜富营养类群如水葱群落(Com.Scirpus tabernaemontani)、茭草群落(Com.Zizania caduciflora)、穗状狐尾藻群落(Com.Myriophyllum spicatum)、满江红(Com.Azolla imbricata)群落等大量出现;群落总数由24a前的9个增至当前的12个,其中挺水植物群落增加2个,浮叶植物群落增加1个,挺水植物群落增幅最大。由东向西、由南向北,纳帕海水生植物群落分布大致呈现出浮叶群落、挺水群落、沉水群落斑块状依次配置的水平格局规律。挺水植物群落分布面积最大,达528.42hm^2,其次是沉水植物群落,分布面积为362.50hm^2,浮叶植物群落分布面积最小,为70.23hm^2。随沉水群落、浮叶群落向挺水群落的演替,群落伴生种数量增加、优势种优势度减小、层次类型改变,群落结构变得更为复杂。纳帕海湿地水生植物群落分布格局及变化是对湿地环境变化的响应,表明了在人为干扰作用影响下,纳帕海湖岸线内移、水量减少、水质恶化等湿地水文条件的改变,致使湿地生态系统功能不断退化。  相似文献   

6.
水稻不同基因型耐低氮能力差异评价   总被引:16,自引:4,他引:12  
以水稻单株谷重及其氮素反应指数作为耐低氮能力指标,分析不同施氮水平下水稻种质资源的耐低氮能力以及单株谷重及其氮素反应指数与其他农艺性状的相关关系。结果表明,水稻种质资源的耐低氮能力在不同施氮水平间均有较大差异,多数农艺性状的表型差异顺序为未施氮〉施低氮〉普通施氮;不同施氮水平间单株谷重、单株草重和穗数的差异大于其他农艺性状。在不同施氮水平下,单株谷重与单株草重均呈极显著正相关;单株谷重的氮素反应指数与单株谷重、单株草重和谷草比均呈极显著正相关。在未施氮水平下,单株谷重与株高、穗数、穗粒数和单株草重的相关性以及单株谷重的氮素反应指数与穗数、单株谷重、单株草重和谷草比的相关性比施低氮或普通施氮水平更为密切。花峰稻、中作9059、旱稻9号、旱稻502和IRAT359等种质资源表现较迟钝的氮素反应,具有较强的耐低氮能力。  相似文献   

7.
Secreted proteins are central to the success of plant pathogenic bacteria. They are used by plant pathogens to adhere to and degrade plant cell walls, to suppress plant defence responses, and to deliver bacterial DNA and proteins into the cytoplasm of plant cells. However, experimental investigations into the identity and role of secreted proteins in plant pathogenesis have been hindered by the fact that many of these proteins are only expressed or secreted in planta, that knockout mutations of individual proteins frequently have little or no obvious phenotype, and that some obligate and fastidious plant pathogens remain recalcitrant to genetic manipulation. The availability of genome sequence data for a large number of agriculturally and scientifically important plant pathogens enables us to predict and compare the complete secretomes of these bacteria. In this paper we outline strategies that are currently being used to identify secretion systems and secreted proteins in Proteobacterial plant pathogens and discuss the implications of these analyses for future investigations into the molecular mechanisms of plant pathogenesis.  相似文献   

8.
Earthworms and arbuscular mycorrhizal fungi (AMF) have profound impacts on plant performance. However, it is largely unknown if and how earthworms and AMF may affect plant succession. We planted mesocosms with an early-mid successional and a mid-late successional grassland plant community and added endogeic earthworms and commercial AMF in a full-factorial way to natural background soil. Earthworms had a positive effect on the total root and shoot biomass of both plant communities, with the effect on the shoots being slightly enhanced by co-inoculation with AMF. Surprisingly, the earthworm effect on the mid successional plant species depended on the successional stage of the plant community. Earthworms had a positive effect on the mid successional plant species when they were growing in the mid-late successional plant community, but no effect when the same plant species were growing in the early-mid successional plant community. Addition of AMF alone tended to reduce the shoot biomass of the early successional plant species, while the addition of earthworms in the presence or absence of AMF increased their shoot biomass. We conclude that the impacts of earthworms on plant species may depend on the successional stage of the plant community, while the effect of AMF addition depends on the successional stage of the plant community and may be changed by the presence of earthworms. Earthworms and AMF addition affect plants and plant communities of different successional stages differently with potential effects on plant succession.  相似文献   

9.
We quantified the effects of exotic annual grass invasion on the ground-layer structure of grassy eucalypt woodlands, with the aim of determining if weed invasion decreased gap size and plant basal area leading to reduced spatial heterogeneity. We measured plant density, distance between plants and basal plant area in woodland sites which ranged from zero to 100% exotic plant cover in the ground-layer. The ground-layer in uninvaded woodlands was heterogeneous, with a large variation in basal plant area and distance between plants. Exotic annual grass density was positively correlated with total plant density, whereas native plant density was negatively correlated. Total plant basal area decreased as total plant density increased, with a lower total plant area in exotic dominated transects compared to native dominated. Variation in basal plant area decreased with increasing plant density. Exotic annual grasses were more closely spaced together (smaller gap size) and had a smaller basal area than the native grasses and rushes. There was also less variation in basal area and gap size with individual exotic annual grasses compared to the native grasses. Inter-plant distance was greater for both the native and exotic grasses when they had native grasses neighbouring them instead of exotic grasses. These findings show that woodlands invaded by exotic annual grasses have relatively less spatial heterogeneity in the ground-layer. These results have implications for other aspects of perennial grassy ecosystems invaded by annual grasses, including plant recruitment and restoration strategies.  相似文献   

10.
Darwin's research on botany and plant physiology was a landmark attempt to integrate plant movements into a biological perspective of behavior. Since antiquity, people have sought to explain plant movements via mechanical or physiological forces, and yet they also constructed analogies between plant and animal behavior. During the Renaissance and Enlightenment, thinkers began to see that physiochemical explanations of plant movements could equally apply to animal behavior and even human thought. Darwin saw his research on plant movements as a strategic front against those who argued that his theory of evolution could not account for the acquisition of new behavioral traits. He believed that his research explained how the different forms of plant movement evolved as modified habits of circumnutation, and he presented evidence that plants might have a brain-like organ, which could have acquired various types of plant sensitivity during evolution. Upon publication of The Power of Movement in Plants, his ideas were overwhelmingly rejected by plant physiologists. Subsequently, plant biologists came to view the work as an important contribution to plant physiology and biology, but its intended contribution to the field of evolution and behavior has been largely overlooked.  相似文献   

11.
关于植物营养生态学   总被引:7,自引:0,他引:7  
植物营养学与植物生态学发展的前沿交叉正形成了植物营养生态学,植物营养生态学是探讨植物营养利用策略的科学,包括植物体内营养的合理利用策略和植物对无机营养环境的改造以利于营养吸收的各种可能策略。其研究内容主要包括养分利用效率、植物体内营养的再利用、体内营养含量格局和植物对土壤无机营养环境的改造。植物营养生态学以植物种群为研究对象。它的发展对深刻理解种群的生态行为特征具有重要意义,同时对如何增进人工混交群落的营养协调性具有实践上的指导意义。营养生态机理的各个方面是相互协调和相互补充的整体,营养生态机理的效率决定了种群营养合理利用的程度和在营养资源上的竞争力。目前,研究上尚缺少营养策略与其它生态策略的关联性的探讨,随着各种营养策略研究上的深入,这种关联性探讨将成为今后植物营养生态学的主要发展趋势。  相似文献   

12.
Nico Eisenhauer  Stefan Scheu 《Oikos》2008,117(7):1026-1036
Invasions of natural communities by non‐indigenous species threaten native biodiversity and are currently rated as one of the most important global‐scale environmental problems. The mechanisms that make communities resistant to invasions and drive the establishment success of seedlings are essential both for management and for understanding community assembly and structure. Especially in grasslands, anecic earthworms are known to function as ecosystem engineers, however, their direct effects on plant community composition and on the invasibility of plant communities via plant seed burial, ingestion and digestion are poorly understood. In a greenhouse experiment we investigated the impact of Lumbricus terrestris, plant functional group identity and seed size of plant invader species and plant functional group of the established plant community on the number and biomass of plant invaders. We set up 120 microcosms comprising four plant community treatments, two earthworm treatments and three plant invader treatments containing three seed size classes. Earthworm performance was influenced by an interaction between plant functional group identity of the established plant community and that of invader species. The established plant community and invader seed size affected the number of invader plants significantly, while invader biomass was only affected by the established community. Since earthworm effects on the number and biomass of invader plants varied with seed size and plant functional group identity they probably play a key role in seedling establishment and plant community composition. Seeds and germinating seedlings in earthworm burrows may significantly contribute to earthworm nutrition, but this deserves further attention. Lumbricus terrestris likely behaves like a ‘farmer’ by collecting plant seeds which cannot directly be swallowed or digested. Presumably, these seeds are left in middens and become eatable after partial microbial decay. Increased earthworm numbers in more diverse plant communities likely contribute to the positive relationship between plant species diversity and resistance against invaders.  相似文献   

13.
ABSTRACT

Background: Plant communities are usually characterised by species composition and abundance, but also underlie a multitude of complex interactions that we have only recently started unveiling. Yet, we are still far from understanding ecological and evolutionary processes shaping the network-level organisation of plant diversity, and to what extent these processes are specific to certain spatial scales or environments.

Aims: Understanding the systemic mechanisms of plant–plant network assembly and their consequences for diversity patterns.

Methods: We review recent methods and results of plant–plant networks.

Results: We synthetize how plant–plant networks can help us to: (a) assess how competition and facilitation may balance each other through the network; (b) analyse the role of plant–plant interactions beyond pairwise competition in structuring plant communities, and (c) forecast the ecological implications of complex species dependencies. We discuss pros and cons, assumptions and limitations of different approaches used for inferring plant–plant networks.

Conclusions: We propose novel opportunities for advancing plant ecology by using ecological networks that encompass different ecological levels and spatio-temporal scales, and incorporate more biological information. Embracing networks of interactions among plants can shed new light on mechanisms driving evolution and ecosystem functioning, helping us to mitigate diversity loss.  相似文献   

14.
Experiments were conducted to test the hypothesis that plant learning by a relative plant-specialist parasitoid wasp should influence the probability of orienting to plant odors (plant finding) and the duration of searching on a plant after landing (plant examining). The insect tested was Diaeretiella rapaeM'Intosh (Hymenoptera: Aphidiidae), a parasitoid wasp that usually attacks aphids on cruciferous plants, but occasionally on other plants. Laboratory experiments using collard as the cruciferous plant and potato as the novel plant demonstrated that postemergence (adult) plant experience affected plant examining only on the less preferred plant, potato, and was reversible and relatively long-term (that is, lasted >2 days). Postemergence experience with potato did not increase orientation to potato odor in a wind tunnel, but postemergence experience with collard resulted in a trend of increased likelihood of flying to collard odor. Preemergence treatments affected plant finding but not plant examining.  相似文献   

15.
Plant perceptions of plant growth-promoting Pseudomonas   总被引:2,自引:0,他引:2  
Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol.  相似文献   

16.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

17.
放牧对草原植物功能性状影响研究进展   总被引:1,自引:0,他引:1  
植物功能性状的表达和植被环境适应性相关,植物功能性状之间的权衡变化体现了植物在放牧胁迫下资源的重新整合和获取.本文总结了放牧干扰下植物功能性状表达的差异性,着重将放牧干扰与植物功能性状相结合,介绍了植物功能性状的变异来源是植物遗传特征与环境过滤相互协调的结果,归纳了放牧对植物营养性状、繁殖性状的影响,以及植物可以通过调...  相似文献   

18.
Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or appropriate controls. In order to further examine the relation between plant species diversity and the soil food web, we conducted a three-year semi-field experiment in which eight plant species (4 forb and 4 grass species) were grown in monocultures and mixtures of two, four and eight plant species. In addition there were communities with 16 plant species. We analyzed the abundance and identity of the nematodes in soil and roots, including feeding groups from various trophic levels (primary and secondary consumers, carnivores, and omnivores) in the soil food web.
Plant species diversity and plant identity affected the diversity of nematodes. The effect of plant diversity was attributed to the complementarity in resource quality of the component plant species rather than to an increase in total resource quantity. The nematode diversity varied more between the different plant species than between different levels of plant species diversity, so that plant identity is more important than plant diversity. Nevertheless the nematode diversity in plant mixtures was higher than in any of the plant monocultures, due to the reduced dominance of the most abundant nematode taxa in the mixed plant communities. Plant species identity affected the abundances of the lower trophic consumer levels more than the higher trophic levels of nematodes. Plant species diversity and plant biomass did not affect nematode abundance. Our results, therefore, support the hypothesis that resource quality is more important than resource quantity for the diversity of soil food web components and that plant species identity is more important than plant diversity per se.  相似文献   

19.
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment.  相似文献   

20.
刘勇  张雅雯  南志标  段廷玉 《生态学报》2016,36(14):4211-4220
放牧、围封、刈割和焚烧是天然草地管理的最主要方式,植物病害是草地生产力的主要限制因素之一,综合考虑生态和经济效益,探讨利用方式对天然草地植物病害的影响,进而采取合理的管理措施,有效降低草地病害危害、提高草地生产力和生态服务功能。分析了放牧、围封和焚烧等草原管理措施对植物病害的影响。放牧对草地植物病害的发生有双重影响,对多数病害而言,放牧可清除草地植被中的病株,减少初侵染源而降低植物病害的发生;但对物理传播的病害,放牧通过家畜传播病原侵染植物,导致病害大面积发生。刈割阻止真菌的进一步侵入与定殖,从而减少草地病害的发生机会;另一方面,刈割形成有利于病原真菌孢子传播的条件,病原真菌通过刈割工具传播到刈割造成的叶片伤口上,为侵入植物体内提供了方便。草地围封增加了植物物种的多度同时降低植物多样性,有利于病害发生。冬末春初植被返青前,焚烧草地可清除枯枝落叶,减少越冬的病原物,降低病害的发生。同时对该领域的研究进行了展望,对今后研究提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号