首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequently asked questions about chlorophyll fluorescence,the sequel   总被引:2,自引:0,他引:2  
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121–158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.  相似文献   

2.
Samson  G.  Prášil  O.  Yaakoubd  B. 《Photosynthetica》1999,37(2):163-182
The measurement of variable chlorophyll (Chl) a fluorescence is widely used as a convenient and versatile tool in photosynthesis research. In many applications empirical correlations and simplified models of Chl a fluorescence are used with success. Nevertheless, variable Chl a fluorescence provides only indirect and complex image of processes occurring within photosynthetic membranes and such simplifications have only limited validity. In this review we elucidate some controversial and still unresolved questions about the origin and interpretation of the variable Chl a fluorescence induction and the proper use of variable Chl a fluorescence for studies of photochemical events in photosystem 2 (PS2). Although the major part of variable Chl a fluorescence reflects the photochemical closure of the PS2 reaction centers (RCs) and can be considered as a function of the redox state of the primary acceptor QA, up to 50 % of the change in the Chl a fluorescence yield can be of secondary, nonphotochemical origin. We review the possible sources of the inherent heterogeneity in the origin of variable Chl a fluorescence. We also comment on the practical implications this bears for the use of variable Chl a fluorescence. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Roháček  K.  Barták  M. 《Photosynthetica》1999,37(3):339-363
The review summarizes basic information about slow and fast chlorophyll (Chl) a fluorescence induction kinetics (FIK) recorded using fluorimeters working on a principle of the pulse amplitude modulation (PAM) of a Chl fluorescence signal. It explains fundamental principles of the measuring technique, evaluates the terminology, symbols, and parameters used. Analysis of Chl FIK resulting in a set of Chl fluorescence parameters (FPs) provides qualitative and quantitative information about photosynthetic processes in chloroplasts. Using FPs, one can describe the functioning of the photosynthetic apparatus under different internal and external conditions. Brief comments on proper application of the fluorimetric method in photosynthesis research and some actual examples are also given. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
With the use of low temperature spectrofluorometry and matrix calculations it was demonstrated that the chlorophyll a pool of higher plants is made up of four different chlorophyll a chromophores. The latter were segregated by high pressure liquid chromatography on a silica column. They were designated Chl a (E432 F664), Chl a (E436 F670), Chl a (E443 F672) and Chl a (E446 F674), where E refers to the Soret excitation maximum and F to the fluorescence emission maximum at 77 K in ether. Likewise the Chl b pool was shown to consist of at least four different Chl b chromophores which were designated: Chl b (E465), Chl b (E470), Chl b (E475) and Chl b (E485). It was proposed that the various chlorophyll chromophores differed by the degree of oxidation of their side chains at the 2 and 4 positions of the macrocycle. It was also suggested that the chemical modifications at the 2 and 4 positions of the macrocycle may play an important role in positioning the different chlorophyll chromophores in the thylakoid membranes.  相似文献   

6.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

7.
We combine ensemble and single-molecule spectroscopy to gain insight into the energy transfer between chlorophylls (Chls) in peridinin-chlorophyll-protein (PCP) complexes reconstituted with Chl a, Chl b, as well as both Chl a and Chl b. The main focus is the heterochlorophyllous system (Chl a/b-N-PCP), and reference information essential to interpret experimental observations is obtained from homochlorophyllous complexes. Energy transfer between Chls in Chl a/b-N-PCP takes place from Chl b to Chl a and also from Chl a to Chl b with comparable Förster energy transfer rates of 0.0324 and 0.0215 ps−1, respectively. Monte Carlo simulations yield the ratio of 39:61 for the excitation distribution between Chl a and Chl b, which is larger than the equilibrium distribution of 34:66. An average Chl a/Chl b fluorescence intensity ratio of 66:34 is measured, however, for single Chl a/b-N-PCP complexes excited into the peridinin (Per) absorption. This difference is attributed to almost three times more efficient energy transfer from Per to Chl a than to Chl b. The results indicate also that due to bilateral energy transfer, the Chl system equilibrates only partially during the excited state lifetimes.  相似文献   

8.
《BBA》2020,1861(7):148191
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms – absorbing at around 650 nm and 658 nm – and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.  相似文献   

9.

Background and aims

Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency.

Methods

Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII) proteins and mineral elements.

Results

Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient plants were accompanied by a marked reduction of the D1 protein in PSII. Foliar Mn application fully restored PSII functionality, ensured winter survival, and increased grain yields under field conditions.

Conclusions

The efficiency and stability of PSII are markedly affected by latent Mn deficiency. Chlorophyll a fluorescence measurements constitute a powerful and valuable tool for diagnosis and remediation of latent Mn deficiency.  相似文献   

10.
Isolation and lipid composition of spinach chloroplast envelope membranes   总被引:12,自引:0,他引:12  
The quenching of the Chl a2 fluorescence from spinach chloroplasts and chloroplast fragments by nitroaromatic compounds and the effect of added metal cations on the quenching rate is investigated. The extent of the quenching with nitrobenzene and 1,3-dinitrobenzene was found to be independent of whether Chl a is excited directly, or through Chl b by means of electronic energy transfer. On the basis of this, the contribution from a purely static mechanism is considered as unlikely.Nitroaromatics substituted with ionizable groups are almost equally effective quenchers for the fluorescence of Chl ain vivo and in methanol. On the other hand, nitroaromatics which are slightly soluble, or nearly insoluble, in water quench more strongly the fluorescence of Chl ain vivo. The overriding factor that determines the relation between the apparent and the true quenching constant appears to be the partition of the quencher in the lipid and the aqueous phases of the membrane suspension.Divalent metal cations enhance the quenching by nitrobenzene dramatically, most likely by increasing the hydrophobic character of the chloroplast membranes. This enhancement occurs at cation concentrations higher than those corresponding to the maximal turbidity increase of the membrane suspension; hence, it is attributed to ultrastructural changes of the membrane rather than to volume changes of the thylakoid. These changes may affect the extent of the quenching both by an increase in the local concentration of the nitroaromatic, and by an enhanced rate of excitation exchange among the chlorophylls.  相似文献   

11.
Diverse measurements of nutrient status indicators were used to test the severity of physiological phosphorus (P) limitation of phytoplankton among lake systems ranging from oligotrophic to eutrophic, based on P and chlorophyll a (Chl a) concentrations. Metabolic assays and particulate nutrient ratios were used to estimate nutrient status at sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios (F v/F m), relative electron transport rates and their response to irradiance were measured by the pulse-amplitude-modulated fluorometer. Under summer stratified conditions, P deficiency was strongest in the oligotrophic sites and nitrogen (N) status indicators and Chl a variable parameters revealed no severe N deficiency. Nutrient amendment assays showed positive associations with P additions and Chl a fluorescence parameters at P-deficient sites. In the most oligotrophic sites, N additions revealed a modest increase only detected by the Chl a fluorescence parameters. Phytoplankton communities were also associated with nutrient status, where chrysophytes and cryptophytes were important in P-deficient sites and cyanobacteria, phyrrophyta, and diatoms were prevalent in nutrient-rich sites. The results confirmed that Chl a fluorescence parameters can reveal P deficiency and indicate its severity among the range of trophic status in aquatic systems.  相似文献   

12.
Seeni S  Gnanam A 《Plant physiology》1982,70(3):815-822
Cell suspension cultures were established from the callus proliferation of leaf explants of 10- to 12-day-old seedlings of the peanut (Arachis hypogaea L. var. TMV-3). The cells could be cultivated in both agitated and still media, the latter promoting more of chlorophyll (Chl) synthesis. High Chl content (210-240 micrograms Chl per gram fresh weight), yield of free and pipetable cells, presence of all the pigments in the same ratio as that of the leaf tissue, and high rates of O2 evolution (140-170 micromoles O2 per milligram Chl per hour) were some of the desirable features of the still-grown cell cultures. However, considerable variations with regard to the above characters were observed between the cell cultures of different varieties of the peanut.

O2 evolution by the cultured cells was dependent on exogenous supply of HCO3. A well-developed photosynthetic apparatus as evidenced from photosystem I and photosystem II activities of the isolated chloroplasts and variable fluorescence measurements with the cell cultures was further documented by electron microscopic evidence of distinct granal stackings in chloroplasts and sodium dodecyl sulfate-polyacrylamide gel separation of thylakoid membranes into P700 Chl a protein complex and light-harvesting Chl a/b complex. Evidence is presented for the relative increase in the Chl associated with P700 Chl a protein complex in contrast to the light-harvesting Chl a/b complex in the cultured cells as compared to intact leaf.

  相似文献   

13.
Chlorophyll (Chl) a fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM–F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl a fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl a fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance.  相似文献   

14.
Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ~1.9, ~1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.  相似文献   

15.
《BBA》2023,1864(3):148982
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2–5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.  相似文献   

16.
Absorption, emission, and fluorescence excitation spectra of pure solutions of chlorophyll a (Chl a) and chlorophyll b (Chl b) in diethyl ether and of equimolecular mixed solutions of the two pigments, were determined at room temperature as functions of concentration (in the range from 5 × 10-6 M to 4 × 10-3 M) and of wavelength of the exciting light (in the regions 380-465 and 550-650 nm). The efficiency of energy transfer from Chl b to Chl a, derived from these data, was found to depend on the wavelength of exciting light. Furthermore, the transfer efficiency calculated from sensitization of Chl a fluorescence by Chl b was substantially smaller than that calculated from quenching of Chl b fluorescence by Chl a. Both these effects are tentatively explained as evidence of superposition of a “fast” energy transfer (taking place before the Boltzmann distribution of vibrational energy had been reached) upon the “delayed” transfer, which takes place after vibrational equilibration. The first-named mechanism is made possible by overlapping of the absorption bands of the two pigments; the second, by overlapping of the emission band of Chl b and the absorption band of Chl a. The first mechanism can lead to repeated transfer of excitation energy between pigment molecules, the second only to a one-time transfer from the donor to the acceptor. Both mechanisms could be of the same, second-order type, with the transfer rate proportional to r-6. An alternative is for the fast mechanism to be of the first order, with the transfer rate proportional to r-3, but spectroscopic evidence seems to make this alternative less probable.  相似文献   

17.
At present, chlorophyll meters are widely used for a quick and nondestructive estimate of chlorophyll (Chl) contents in plant leaves. Chl meters allow to estimate the Chl content in relative units - the Chl index (CI). However, using such meters, one can face a problem of converting CI into absolute values of the pigment content and comparing data acquired with different devices and for different plant species. Many Chl meters (SPAD-502, CL-01, CCM-200) demonstrated a high degree of correlation between the CI and the absolute pigment content. A number of formulas have been deduced for different plant species to convert the CI into the absolute value of the photosynthetic pigment content. However, such data have not been yet acquired for the atLEAF+ Chl meter. The purpose of the present study was to assess the applicability of the atLEAF+ Chl meter for estimating the Chl content. A significant species-specific exponential relationships between the atLEAF value (corresponding to CI) and extractable Chl a, Chl b, Chl (a+b) for Calamus dioicus and Cleistanthus sp. were shown. The correlations between the atLEAF values and the content of Chl a, Chl b, and Chl (a+b) per unit of leaf area was stronger than that per unit of dry leaf mass. The atLEAF value- Chl b correlation was weaker than that of atLEAF value-Chl a and atLEAF value-Chl (a+b) correlations. The influence of light conditions (Chl a/b ratio) on the atLEAF value has been also shown. The obtained results indicated that the atLEAF+ Chl meter is a cheap and convenient tool for a quick nondestructive estimate of the Chl content, if properly calibrated, and can be used for this purpose along with other Chl meters.  相似文献   

18.
Leaf reddening in overwintering evergreens largely restricts their application in landscapes and is generally triggered in response to excess light. To explore how leaves respond to excess light and examine the potential relevance of leaf reddening in this process, a comparative field study was conducted on the sun leaves (SUL), shade leaves (SHL) and three levels of artificially shaded sun leaves (SSUL) of Buxus microphylla ‘Wintergreen’. The seasonal changes in leaf colorations, chlorophyll (Chl) and carotenoid contents, leaf absorbance and chlorophyll fluorescence characteristics were investigated. The results showed that SUL upregulated Chl a/b with increased reductions in Chl b compared with Chl a, accumulated red pigments in the upper palisade mesophyll with reduced absorption in blue and red light but increased absorption in green light, and additionally, significantly downregulated photochemical activities through the sustained enhancement of energy dissipation in PSII antenna (ΦD) from fall to midwinter. In the SSUL, as the light intensity decreased, all of the above processes were mitigated except that the SSUL maintained constant absorptions in blue light region and whose levels were similar to those of the SUL and SHL. In contrast, the SHL maintained relatively high levels of Chl a and Chl b, remained completely green and showed regulated ΦD and ΦE (energy dissipation in PSII reaction centers) to maintain relatively high photochemical activity in the winter. We conclude that the sun leaves downregulate Chl contents to reduce the light absorption and simultaneously enhance sustained ΦD to dissipate most of the light energy, whereas shade leaves maintain relatively high Chl contents and demonstrate regulated proportions of ΦD and ΦE to match the extent to which the absorbed light can be utilized through photochemical reactions. The accumulated red pigments in sun phenotypes may provide a shading effect on Chls by directing energy to non-photosynthetic reaction centers in the blue light region where the absorption is offset by the reduced Chls.  相似文献   

19.
Chlorophyll a (Chl a) fluorescence-temperature profile in the region of 20–80°C was recorded for fourteen different plant species. In all the species studied, there was a rise in the fluorescence intensity in the region of 45–50°C and around 55°C the fluorescence intensity started to decline. In four of the species (Acacia melanoxylon, Ervatamia montana, Eucalyptus tertecornius and Azardicta indica) tested, there was a secondary rise in the fluorescence intensity around 65–70°C whereas in all other species a sharp decline in the fluorescence intensity was observed at this point. These changes in the fluorescence intensity at high temperatures (65–70°C) appear to be species specific and cannot be explained either in terms of changes in the stoichiometry between the two photosystems or in terms of Chl a fluorescence emission from photosystem I (PS I) at higher temperatures. This conclusion is supported by following observations: (1) there was no definite correlation between the Chl a/Chl b ratio and the pattern of fluorescence-temperature profile at high temperatures; (2) the sun and shade plants of the same species had a similar pattern of fluorescence-temperature profile; and (3) preferential excitation of PS I did not alter the fluorescence-temperature profile.Abbreviations Chl chlorophyll - PS photosystem  相似文献   

20.
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号