首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of 15 taxa pollen seasons in Kraków, in 1991–2008 was monitored using a Burkard volumetric spore trap of the Hirst design. The highest daily pollen concentrations were achieved in the first half of May, and they were caused mainly by Betula and Pinus pollen. The second period of the high concentrations took place from the middle of July to the end of August (mainly Urtica pollen). Tree pollen seasons were shorter (18–24 days) in comparison with the most herbaceous pollen seasons (73–89 days), except at Artemisia and Ambrosia seasons (30 and 24 days, respectively). The season phases (percentyles) of the spring and late-summer taxa were the most variable in the consecutive years. The highest annual sums were noted for Urtica, Poaceae (herbaceous pollen seasons) and for Betula, Pinus, Alnus (tree pollen seasons), and the highest variability of annual totals was stated for Urtica, Populus, Fraxinus and the lowest for Ambrosia, Corylus, Poaceae. For the plants that pollinate in the middle of the pollen season (Quercus, Pinus and Rumex), the date of the season start seems not to be related to the season end, while for late pollen seasons, especially for Ambrosia and Artemisia, the statistically negative correlation between the start and the end season dates was found. Additionally, for the most studied taxa, the increase in annual pollen totals was observed. The presented results could be useful for the allergological practice and general botanical knowledge.  相似文献   

2.
The diurnal variation of airborne pollen concentrations of Alnus, Betula, Pinus, Poaceae, Urtica and Artemisia was examined at the sampling station in Gdańsk, northern Poland. Diurnal patterns of Alnus and Pinus pollen show distinctly lower values and low frequency of diurnal maxima between midnight and late morning and a clear rise of pollen counts at around noon. The rather high values remain during the afternoon and evening. The Betula pollen counts are almost evenly distributed along day and night and diurnal maxima appear in similar frequency at any time of day. Pollen concentrations of Poaceae increase at about 9.00 hours and remain high till late evening. Diurnal patterns of Urtica and Artemisia show very clear variation with high peaks at around 9.00 hours (Artemisia) and 13.00 hours (Urtica). The comparison of the data from Gdańsk with the data from other aerobiological stations shows very similar general features in the diurnal patterns irrespective the region or the local situation.  相似文献   

3.
This is the first data from a pollen survey in Vigo, an Atlantic city in northwest Spain. The pollen calendar for Vigo is presented, as well as the pollination period for the nine most important allergenic plants. Through 1995, 30 083 pollen grains belonging to 52 taxa, were recorded using the Lanzoni VPPS 2000 volumetric spore-trap. The most relevant taxa found were: Urticaceae,Pinus, Poaceae andQuercus (75% of the total pollen),Betula, Castanea, Cupressaceae, Chenopodiaceae, Ericaceae, Myrtaceae,Olea, Plantago, Platanus andRumex (21%), and the final 4% was distributed mainly among pollen types, such as:Corylus, Alnus, Fabaceae, Compositae,Artemisia andCedrus. Of the total annual pollen count, 56% was found in March and April. Another, secondary peak was recorded in June corresponding to the flowering period of herbaceous species. The high pollen total of Urticaceae (7625 grains, 25% of the total) should be highlighted. The percentages ofOlea europaea (565 grains) should be noted as well, taking into account its geographical distribution.  相似文献   

4.
First data from a pollen survey carried out in the city of Murcia (SE Spain) are given in this paper. Using a Burkard Volumetric Spore Trap, daily slides were prepared and 80 pollen types belonging to 51 families andAlternaria spores were identified and counted. Special attention was paid to 14 relevant taxa: Cupressaceae,Pinus, Genisteae,Olea, Morus, Acer, Platanus, Plantago, Quercus, Urticaceae, Poaceae, Chenopodiaceae,Artemisia andAlternaria. The main sources of airborne particles wereAlternaria (27.7%), Cupressaceae (13.5%),Olea (9.36%), Chenopodiaceae (8.31%) and Urticaceae (5.8%). Annual variations in pollen abundance and length of the flowering seasons are given for individual species and are related to environmental factors. Results indicate a main pollen season from March to June and a second minor season in September to October. The relatively high concentrations of Genisteae and the appearance of anArtemisia winter season were noted.  相似文献   

5.
The aerobiological investigations were carriedout at five sites located in different climaticand geobotanical regions in Poland. The diurnalperiodicity of Alnus, Betula, Secale,Poaceae, Urtica, and Artemisia wasstudied during two successive years. The taxawere chosen on the basis of pollen grainabundance and allergenity. The pollen wascollected with a Burkard spore trap. Twelvetransversal transverses of microscope slidescorresponding to two-hour periods wereanalysed. The diurnal variations ofPoaceae, Alnus and Betula were irregularand varied between sites and years; highconcentrations were observed at different hoursof the day and night. Diurnal concentrations of Secale, Urtica and Artemisia hadonly one maximum in the middle of the day,constant between sites and years. The lowestconcentrations were observed between eveningand early morning. There was no close relationbetween the time of the liberation ofAlnus, Betula and Poaceae pollen and thetime of the maximum pollen counts. There was aseveral hour delay observed between the timeof Secale pollen liberation and maximumconcentration of airborne pollen.  相似文献   

6.
A growing number of studies are researching indoor air concentrations of pollen in buildings, but to our knowledge no studies have dealt with the precise concentration of pollen inside private cars. The aim of this study was to assess the risk of exposure to pollen in private cars throughout the Poaceae and Artemisia spp. pollen season.

The study was conducted in the town of Lappeenranta and along Highway 6 in south‐east Finland between July 14 and August 17, 2003. The pollen concentrations were measured inside two moving and parked cars using rotorod‐type samplers. Surface and ambient Burkard samples were also collected.

Both Poaceae and Artemisia spp. pollen were recorded only on one day and in low concentrations (<10 pollen grains per cubic meter, pg/m3) inside moving and parked cars, whereas the concentrations of Betula spp. (0–15 vs. 0–12?pg/m3) and Pinus (0–41 vs. 0–80?pg/m3) ranged from low to moderate, respectively. The number of pollen grains on the inside surfaces of cars ranged from zero to 72?pg/cm2 during the measurement periods.

The concentrations of Poaceae and Artemisia spp. pollen in the indoor air of the car during the flowering period were low, therefore, likely to cause reactions only in the most sensitive people. By contrast, even after the main flowering period the concentrations of Betula spp. pollen were on a level high enough to cause reactions in individuals with allergies.  相似文献   

7.
Airborne concentrations of pollen from Betula (birch), Poaceae (grasses) and Artemisia (mugwort) are compared during a seven year period (90–96) with respect to both quantitative and seasonal aspects, at three different sampling sites, one in Estonia (Tartu) and two in Sweden (Stockholm and Roma on the island of Gotland). All three taxa occur in the region and are well‐known causes of allergic sensitisation. The annual total and peak values of birch, grass and mugwort pollen were found to be much higher in Tartu than in Stockholm and Roma. Both the birch and the grass pollen seasons ended later in Stockholm than in Roma and Tartu. The mugwort flowering season always began earlier in Stockholm than at the other sites, and more days elapsed between start day and peak day in Stockholm than in Tartu.  相似文献   

8.
Vigo is a city located in the northwest of the Iberian Peninsula. Influenced by the Atlantic climate, it is surrounded by a Eurosiberian-type vegetation, modified by the introduction of forestry and ornamental species. Different ruderal vegetation types, resulting from human influence, grow in the area. The study of the pollen content of the air of Vigo started in 1989, with a Cour trap. Average results for the period 1989–1995 are presented in this paper, together with the lowest and highest values found. The representativeness of the mean values is analysed by calculating the coefficient of variation of the data series. Most pollen types in the atmosphere of Vigo are from tree species (54.2%); an important proportion comes from herb species (43.9%) and very few (1.8%) correspond to shrub species. A total of 73 different pollen types have been identified. The most abundant, listed in decreasing order of mean annual values for the period, are:Pinus (25.1%), Poaceae (21.1%), Urticaceae (14.6%),Quercus (8.5%),Castanea (3.7%),Betula (3.6%),Eucalyptus (3.4%),Plantago (3.2%),Alnus (2.1%), Cupressaceae (2.1%), Oleaceae (1.6%;Olea 1.3%),Platanus (1.3%),Rumex (1.3%), Chenopodiaceae/Amaranthaceae (1.0%), Ericaceae (0.8%), Asteraceae (0.6%;Artemisia 0.1% andTaraxacum type 0.2%) andMercurialis (0.5%). A pollen calendar showing the annual dynamics of all these pollen types is presented in this paper. A parallel study of the clinical importance of respiratory allergies in Vigo was also conducted. From a sample of 2750 patients, 87.2% suffered from rhinoconjunctivitis, 26.0% of these due to pollen, and 78.3% from asthma, 17.2% due to pollen. The pollen types responsible for these allergies, listed in decreasing order, are: Poaceae (78%),Parietaria (12%),Chenopodium (11%),Plantago (9%), Oak (4%),Artemisia (3%),Pinus (3%),Eucalyptus (3%),Olea (2%),Platanus (2%),Castanea (2%),Taraxacum (2%),Rumex (2%),Betula (1%),Cupressus (1%) andMercurialis (1%).  相似文献   

9.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

10.
This paper presents a 2-year survey ofArtemisia airborne pollen concentrations in Murcia. An importantArtemisia blooming taking place in winter is confirmed in Murcia (SE Spain). This phenomenon could explain the incidence of winter pollinosis in Murcia. On the other hand, for the first time, three consecutive pollen seasons ofArtemisia, corresponding to three different species (A. campestris, A. herba-alba andA. barrelieri) have been noted. Mathematical analyses show the relations between pollen concentrations ofArtemisia in summer and autumn, and precipitation occurring 6–8 weeks before. Blooming outsets seem to be related to cumulative percentage of isolation from 1 March. Meteorological factors do not seem to influence pollen concentration in any significant way once pollination has begun.  相似文献   

11.
石家庄市空气花粉散布规律及与气候因子的关系   总被引:1,自引:0,他引:1  
李英  李月丛  吕素青  许清海 《生态学报》2014,34(6):1575-1586
石家庄市2007—2009连续两年空气花粉分析表明:受植物花期影响,春季以木本植物花粉为主,夏、秋季以草本植物花粉为主,不同类型花粉通量存在一定年际差异。松属、杨属、胡桃属等当地花粉含量占花粉组合的80.0%以上,桦木属、栎属、虎榛子属等区域花粉含量低于20.0%,显示空气花粉能较好地反映周围植被,但也受区域植被的影响。依据空气花粉通量变化规律,石家庄市主要空气花粉类型通量从高到低排在前5位的依次为:胡桃属、悬铃木属、蒿属、杨属、藜科,均为高致敏类型,花粉过敏症患者在其花期或通量较高时期应早作防范。空气花粉百分含量与气候因子之间的(CCA)分析结果显示,其主要受风速与水汽压影响;不同季节主要花粉类型通量与气候因子的相关分析表明:春季和秋季空气花粉通量主要受气温和水汽压的影响,夏季主要受相对湿度和水汽压的影响,冬季与气候因子相关较弱。  相似文献   

12.
This paper presents the results of pollen analyses from organic sediments of seven cores (299 spectra) in a mountainous area of the north-west Iberian peninsula. The pollen diagrams, supported by seven14C dates, are used to construct a regional pollen sequence covering the main stages of vegetation dynamics, from the last phases of the Late-glacial until the present. During the Late-glacial Interstadial an important development of cryophilous forests (Betula andPinus) was recorded, although various mesophilous and thermophilous tree elements were also present. The Younger Dryas, palynologically clearly defined, is characterized by an important reduction in tree pollen percentages and the expansion of steppe formations (Poaceae andArtemisia). At the beginning of the Holocene, there was an expansion ofQuercus and a spread of other trees, which combined to give a vegetation cover of varied composition but dominated by mixed deciduous forests. Such forest formations prevailed in these mountains until 3000 years ago, when successive deforestation phases are recorded at various times as a result of increased farming activity. The results are compared with data from other mountainous areas in the northern Iberian peninsula and southern France.  相似文献   

13.
Summary During the pollen season, a daily account of airborne pollen is reported by radio and newpapers in Denmark as «Today's pollen count». The Aerobiological Group under the Danish Asthma and Allergy association is responsible for the daily identification and counting of pollen. In 1984 the Group set up a trial to investigate the reproducibility of the pollen count.Three trained pollen counters independently examined the same specimens from two Burkard pollen traps. The traps were located on the roof of the Meterological Institute in Copenhagen 15 meters above ground level in the northern outskirts of central Copenhagen. This is the usual sampling site. Specimens from each trap from 20 days during the grass pollen season were selected. Four species groups were identified in sufficient numbers for statistical analysis. These were, in order of occurrence, spruce/pine (Picea/Pinus), grass (Poaceae), nettle (Urtica) and mugwort (Artemisia).Identification of sources of variation and assessment of their relative importance were carried out using variance components models. A detailed account of the method is given.Qualitatively equivalent conclusions were reached for each group: i) The expected seasonal variation was identified; ii) The counters contributed significantly to the variation of pollen counts; iii) The traps did not contribute to the variance, but a day-trap interaction was identified. This interaction was interpreted. as a problem of instrumental variation over time of traps of variation in meteorological conditions; iv) The total variance was larger than originally expected. The relative uncertainty was greater than 50 per cent.The variance of the daily pollen count cannot be reduced much by reducing counter variation or day-trap interaction. The variation among pollen counters is small, and the day-trap interaction is difficult to fully comprehend. The basic measurement error can be reduced by examining a larger area of each specimen. Although this implies a greater cost, it is probably the most effective method of reducing the uncertainty of «Today's pollen count».  相似文献   

14.
In the Lourdes Basin, pollen analytical results and 41 14C dates from three sites (four profiles, 538 spectra) have enabled a coherent biostratigraphy to be established from the last Pleniglacial to the present. The end of the Würm Pleniglacial is characterised by a long phase dominated by Poaceae that extended from ca. 20 000 to ca. 15 000 B.P. Another phase with Poaceae, in the context of a treeless environment, is recorded during the late-glacial between the Juniperus optimum (ca. 13 000 B.P.) and the Betula optimum (after ca. 12 500 B.P.). A marked decline in Betula and a rise in Artemisia values suggest a significant cooling of the climate during the Younger Dryas, an event which is now clearly recorded at several sites in southern Europe. The beginning of the Holocene is characterized by the minor role of Pinus and the early arrival of Quercus which achieves an absolute maximum before the arrival of Ulmus and Corylus. A critical assessment of previously published data is made in the light of these new results.  相似文献   

15.
The content of herbaceous pollen in the atmosphere depends on the vegetal cover, climate and the weather and geographical conditions. The aim of the study reported here was to compare aerobiological data obtained from pollen monitoring stations located at sites differing with respect to their flora and microclimate – i.e. a town and a rural area. A volumetric method was used for sampling. In each microscopic preparation 12 vertical strips corresponding with 2-h intervals were analysed. A 90% method was used to determine the pollen season. The results were statistically verified using the u test and the Kolmogorov-Smirnov, Spearman and Wilcoxon tests. Higher values of the Seasonal Pollen Index (SPI), higher daily average concentrations and higher peak values were recorded in the rural area. An analysis of intradiurnal variations of airborne pollen showed that apart from the Poaceae the number of pollen grains in the air began to increase earlier in the day in the rural area; in the case of Rumex and Ambrosia, the maximum values also appeared a few hours earlier. For all the taxa investigated, the analysis of correlation showed a significant association between the daily average concentrations at both sites. The weakest association occurred for Plantago lanceolata; for all other taxa, the determination coefficients (R 2) were high. The results of the Wilcoxon test showed that, despite the strong positive association between daily concentrations of the pollen types investigated, there were differences in mean pollen concentrations in the overlapping pollen season. Mean concentrations of Poaceae and Rumex airborne pollen were significantly higher in the rural area in both years, and those of Urtica and P. lanceolata were significantly higher only in 2002.  相似文献   

16.
A significant increase in summer temperatures has been observed for the period 1996–2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species (Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann–Kendall test and Sen’s slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman’s rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July–September daily minimum temperatures (r?=??0.644, p?Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.  相似文献   

17.
While the biophysics of anemophilous pollen dispersal is understood in principle, empirical studies for testing such principles are rare, particularly in native ecosystems. This paper describes mechanisms underlying the dispersal of Artemisia pollen in a Wyoming sagebrush steppe. The relationships between meteorological variables and pollen flux were defined during the 1999 Artemisia flowering season, and detailed processes at the individual plant level were experimentally tested in the field in 2000. Results indicated that Artemisia pollen presentation is continuous but with early morning maxima. Atmospheric pollen concentrations and potential dispersal rates are controlled at diurnal time scales by individual flower development together with characteristic changes in temperature/humidity and wind speeds, at multi-day scales by frontal weather patterns, and at week-long scales by flowering phenology.  相似文献   

18.
In this study, a Tauber pollen trap was used in the urban area of Shijiazhuang to monitor continuously the outdoor air pollen from 2007 to 2011. The trap was emptied at regular intervals (typically 15 days). The results show that airborne pollen assemblages are generally similar each year among 2007–2011 and are responsive to the flowering times of plants, being dominated by pollen from woody plants in the spring and by pollen from herbaceous plants in summer and autumn. Two peak pollen influx periods, especially for the main allergenic pollen taxa, are seen, one between early March to early June and a second between late August to early October. During the four seasons, the main pollen taxa are Juglans, Artemisia, Platanus, Populus, Chenopodiaceae, Urtica + Humulus, Rosaceae, Pinus, Poaceae, Cereals, Quercus, and Betula, and all taxa other than Rosaceae were confirmed by relevant studies to be allergenic pollen taxa. RDA analysis of pollen influx and meteorological factors shows that in spring, temperature and humidity have significant effects on the pollen influx of woody plants; in summer, humidity and precipitation have significant negative effects on pollen influx of herbaceous plants; in autumn, temperature, water vapor pressure, and precipitation have a significant positive influence on herbaceous pollen influx; in winter, there were no significant correlations between airborne pollen influx and meteorological factors. The results reveal the dispersion patterns of airborne pollen and provide an important reference to appropriate construction of urban green systems and the reliable reduction in regional pollinosis.  相似文献   

19.
The core of Lake Kremensko-5, one of the cirque lakes in the northern Pirin Mountains of southwestern Bulgaria, contains sediments from more than 13,500 years b.p. and a pollen stratigraphy that can be correlated with the interstadial/stadial cycle of the Late-glacial period. Artemisia and Chenopodiaceae predominate in the basal part of the sequence, indicating the presence of mountain steppe type vegetation soon after the ice retreat. A sharp increase of Pinus diploxylon-type and Poaceae after 12,360 b.p. is followed by a return of Artemisia and Chenopodiaceae, marking the Younger Dryas. Its abrupt termination must result from an unconformity, for high values of Quercetum mixtum, dated at other sites in the Pirin Mountains as early Holocene, are missing here, perhaps because of erosion at a time of low lake level related to the high insolation maximum during the early Holocene.  相似文献   

20.
Weichselian interstadial vegetation history has been studied by means of pollen analysis of organic bearing fine-grained sediments at Dörrsvålen and Brovalltjärnen in a low mountain area in Härjedalen. The composition of the pollen flora suggests treeless vegetation consisting of shrubs and herbs. The interstadial vegetation consisted of Betula nana, Ericaceae, Juniperus and Salix spp. mixed with herbaceous plant communities including Gramineae, Cyperaceae, Caryophyllaceae, Saxifraga, Rumex/Oxyria and Polygonum. Betula and Pinus are represented by long distance-transported pollen. During the interstadial the climatic conditions seem to have been very harsh and continental as (cold) steppe plants reach high frequencies, e.g. Artemisia and Chenopodiaceae. The sediments are thought to have been deposited during an early Weichselian interstadial tentatively correlated with Tärendö in Norrbotten province, northern Sweden, and Odderade in Denmark and north-western Germany. Comparisons are made with other interstadial sites in central and northern Sweden, and in south-eastern Norway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号