首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sorghum [Sorghum bicolor (L.) Moench] and sunflower (Helianthus annuus L.) were grown in a greenhouse with roots divided between sand irrigated with nutrient solution (–0.097 MPa) or nutrient solution containing polyethylene glycol (PEG) (–0.570 MPa) to compare the effect of unequal root zone stress on plant water relations of a C4 (sorghum) and a C3 (sunflower) plant. Roots also were divided between two pots of sand irrigated only with nutrient solution (controls) or only with PEG in nutrient solution. In addition to plant water-status measurements, photosynthetic rate, growth (height, root, and shoot dry weights), and evolution of ethylene (a gaseous hormone indicative of stress) were measured. Under all three split-root treatments, sunflower had a lower leaf water potential and produced more ethylene than sorghum. Sunflower was able to survive the PEG stress if half of its root system was under nonstressed conditions. Sunflower with half its root system irrigated with PEG usually had values of leaf water potential, osmotic potential, stomatal resistance, transpiration rate, photosynthetic rate, ethylene evolution, height, and dry weights that were close to those of the control plants. Sunflower with all roots exposed to PEG was wilted severely. Sorghum was little affected by PEG stress applied either to half or all the root system. Growth of sorghum was the same under all treatments. Apparently because stomata of sorghum were more closed in the partial stress test than those of sunflower, sorghum conserved water and had a higher leaf water potential, which might have permitted growth with stress.  相似文献   

2.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

3.
Blum, A., Mayer, J. and Golan, G. 1988. The effect of grainnumber per ear (sink size) on source activity and its water-relationsin wheat.–J. exp. Bot. 39: 106–114. Work was done to evaluate the nature of sink-source relationshipsin wheat (Triticum aestivum L.), when the strength of the sinkwas modified by the removal of half of the grain from the earat about anthesis. The main hypothesis was that sink-sourcerelationship would be modified by water stress and that a weakersink would improve the drought resistance of the source. Two experiments were performed. The first experiment evaluatedthe effect of de-graining in two wheat varieties grown in thefield. The second experiment (in the greenhouse) evaluated theeffect of de-graining in plants subjected to water stress afteranthesis by immersing the root system in a solution of polyethyleneglycol (6000), as compared with non-stressed controls. In bothexperiments measurements were performed after de-graining toprovide data on leaf gas exchange, leaf water potential, osmoticadjustment of leaves and ears (greenhouse), the percent of stemweight loss as an index of stem reserve mobilization, finalroot weight (greenhouse) and ear weight components. De-graining caused a decrease in flag leaf stomatal conductance,carbon exchange rate (CER) and transpiration and an increasein flag leaf water potential. These effects were stronger withwater stress. De-graining did not affect osmotic adjustmentin the flag leaf but induced better adjustment in glumes andawns. De-graining decreased the percent of stem weight lossand increased final root weight, especially under drought stress. A weaker sink was, therefore, considered to improve plant droughtresistance in terms of the maintenance of higher leaf waterpotential, a larger root, a better osmotic adjustment in theear and, possibly, increased flag leaf longevity. The ‘cost’of this improved drought resistance was in reduced flag leafCER and reduced stem (and root?) reserve mobilization. Key words: Drought resistance, carbon exchange rate, stomata, transpiration, osmotic adjustment, leaf water potential, root, awns, yield  相似文献   

4.
Diaprepes abbreviatus L. (Coleoptera: Curculionidae), feeds on a variety of ornamental plants grown in southern Florida. Studies were conducted to evaluate the effects of root feeding by D. abbreviatus larvae on leaf gas exchange and growth of three ornamental tree species commonly grown in southern Florida that are known hosts of this weevil: green buttonwood, Conocarpus erectus L.; live oak, Quercus virginiana Mill.; and pygmy date palm, Phoenix roebelenii O'Brien. These hosts were grown in containers and infested with weevil larvae. Net CO2 assimilation, transpiration, and stomatal conductance of CO, were measured monthly. Leaf, stem, and root fresh and dry weights of each species also were determined. In one of two tests, larval root feeding significantly reduced net CO2 assimilation, transpiration, and stomatal conductance of CO2 of infested green buttonwood trees. Leaf gas exchange of live oak was not affected by larval infestation. In addition to testing cumulative effects of multiple infestations of larvae, the effects of incremental infestations on leaf gas exchange and fresh and dry weights also were tested for each plant species. Net CO2 assimilation, transpiration, stomatal conductance of CO2, and dry weights of green buttonwood were reduced as a result of larval root feeding, whereas there was no effect of incremental larval infestations on leaf gas exchange of live oak or pygmy date palm within the experimental time frame. There was no effect of incremental larval infestations on dry weights of live oak, but leaf, stem, and dry root weight of pygmy date palm were lower for infested plants than for noninfested plants. Overall, green buttonwood was more susceptible to larval root feeding damage than either live oak or pygmy date palm.  相似文献   

5.
Pot-grown peanut plants (Arachis hypogaea L.) cv. Yue-You No. 551–116 at five-leaf-stage were treated with 0, 266 or 532 ppm growth retardant PP333 aqueous solution as a soildrench and liquid spray to the whole shoot, smeared on the stems or fully developed leaves. Forty days after treatment, growth rate of main stem and transpiratory rate were measured andthe ultrastructures of leaf and chloroplast were also observed under electron microscope. The results obtained are as follows: 1. PP333 resulted in reduction of stem elongation and dryweight of shoot, but there was no influence or even slight enhancement with the dry weight of root, thus, the root: stem ratio was increased. By applicating PP333, transpiratory rate was lessthan that of the control, but the water storage cells in treated leaves were significantly larger. These anatomical and physiological characteristics of treated plant are an advantage in tolerating the drought stress. 2. Compared with the control, PP333 caused the epidermal cellsize smaller and reduced the number of grana lamella and stroma lamella, so development of chloroplast was inhibited. 3. Significant retardation occurred when PP333 was applied to soilas compared with that applied to the shoot. Among shoot applications, the stem is more effective at reducing stem elongation than that to the leaf. Based on the results mentioned above, authors suggest that the most effective method of PP333. application for peanut is soil drench.  相似文献   

6.
Summary A greenhouse study in which 24, 54 and 71 per cent roots of wheat (Triticum aestivum L.) were pruned on the 73rd day from the date of planting (anthesis stage) showed that during a 7-day period following root pruning, total transpiration and leaf water potential were significantly lower (P=0.05) and the stomatal resistance was significantly higher (P=0.05) where 54 and 71 per cent roots were pruned, as compared to no root pruning or 24 per cent root pruning. The leaf relative water content, however, showed no significant differences. Thus about one-fourth root sytem could be reduced without adversely affecting the plant-water status.  相似文献   

7.
Red osier dogwood (Cornus stolonifera Michx.) was artificially acclimated by exposing plants to 8-hour short days (SD) and low (15/5 C) temperatures for 54 to 63 days. Several factors including transpiration rate, stomatal resistance, and root conductivity were correlated so that the rate of water loss in acclimating plants was higher during the first 30 to 40 days of the acclimation sequence. Six days after transferring plants to SD conditions, the stomatal resistance (r8) decreased significantly below the r8 of the 16-hour long day (LD) control plants at the same temperature. Transpiration rate increased by approximately 20 to 30% in the plants transferred to SD. After the initially higher transpiration rate and greater stomatal opening, the stomates closed tightly during the last 2 weeks of acclimation and the transpiration rate of the SD plants dropped to well below the LD control plants. By the end of the acclimation sequence, root conductivity to water uptake was two to three times lower in the SD plants. Leaf xylem water potentials were similar or slightly lower in the plants kept under SD conditions during the first 5 to 7 weeks of the acclimation sequence. During the last 10 to 15 days of acclimation when the stomates closed, SD leaf water potential rose significantly above the plants in the LD conditions. During acclimation, stem water content decreased by 40 to 50%. Changes in tissue hydration can be indirectly related to plant hardiness and may be affected by alteration of stomatal resistance, transpiration rate, and root conductivity during acclimation.  相似文献   

8.
In most plant species, a decrease in atmospheric humidity at the leaf surface triggers a decrease in stomatal conductance. While guard cells appear to respond to humidity‐induced changes in transpiration rate, as opposed to relative humidity or vapour pressure difference, the underlying cellular mechanisms for this response remain unknown. In the present set of experiments, abscisic acid (ABA)‐deficient (aba1) and ABA‐insensitive (abi1‐1 and abi2‐1) mutants of Arabidopsis thaliana were used to test the hypothesis that the humidity signal is transduced by changes in the flux or concentration of ABA delivered to the stomatal complex in the transpiration stream. In gas exchange experiments, stomatal conductance was as sensitive to changes in vapour pressure difference in aba1, abi1‐1 and abi2‐1 mutant plants as in wild‐type plants. These experiments appear to rule out an obligate role for either the concentration or flux of ABA or ABA conjugates as mediators of the guard cell response to atmospheric water potential. The results stand in contrast to the well‐established role of ABA in mediating guard cell responses to decreases in soil water potential.  相似文献   

9.
Plants of Acacia and Eucalyptus species were grown under differentlevels of shading, nutrition, and irrigation to assess the effectof these factors on plant water use. Water use per unit of leaf(phyllode) area was affected only by the irrigation treatment,control plants that had received water daily using appreciablymore water than plants that had been repeatedly subjected towater stress. Water stress conditioning had little or no effecton plant height, leaf (phyllode) area, or minimum stomatal resistancein any of the species. Detailed study of the water stress conditioningof Eucalyptus robusta showed that controls used 46% more waterthan conditioned plants. Leaf area and plant height were unaffectedby conditioning. Control of transpiration was not due to stomatalfunctioning, both sets of plants operating with the same leafdiffusive resistance under conditions of ready water availability.Hydraulic conductivity of the intact root system was loweredby conditioning and it is suggested that this was due, at leastin part, to the effect that conditioning had on root xylem conductivity.Specific conductivity of stem sections was lowered by waterstress conditioning. Water stress avoidance was also associatedwith a more pronounced tendency for stomata to close prior towilting and with a higher level of leaf resistance which couldbe maintained at a low leaf water potential. Conditioned plantsexhibited drought tolerance in their ability to control lossof water from the leaf at lower leaf water potentials than thecontrols.  相似文献   

10.
Summary Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.Dedicated to Prof. Dr. Karl Mägdefrau, Deisenhofen, on the ocasion of his 80th birthday  相似文献   

11.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan3-ol], formulated as GFU 265, applied at 100, 250, and 500 mg plant–1 to the soil of container-grown sweet orange [Citrus sinensis (L.) Osbeck cv. Valencia], suppressed plant weight, stem height, leaf size, and total leaf area. At the 500-mg dosage, total plant dry weight was reduced by 61%, stem height by 74%, and both leaf biomass and area by 80%, as compared to control plants. All paclobutrazol dosages induced fibrous root thickening and increased their soluble sugar and starch content. Fresh root biomass was 14 to 40% higher and root:shoot ratios were increased three- to sixfold for treated plants. Paclobutrazol applications of 250 and 500 mg plant–1 reduced leaf photosynthetic rate, ribulose bisphosphate carboxylase activity, total nonstructural carbohydrates, and dark respiration 70 to 80% of the control plants. Reductions of leaf photosynthetic rate, carboxylase activity, and photosynthate by paclobutrazol contributed to biomass reduction in treated sweet orange.Mention of a trademark, warranty, proprietary product, or vendor does not constitute a guarantee by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

12.
Koide, R. 1985. The effect of VA mycorrhizal infection and phosphorusstatus on sunflower hydraulic and stomatal properties.—J. exp. Bot. 36: 1087–1098. Mycorrhizal (M) and non-mycorrhizal (NM) sunflower plants weregrown in a soil of low phosphorus availability (with and withoutphosphorus amendment) and in a soil of moderate phosphorus availability(without phosphorus amendment). Using the Ohm's law analogyand measured leaf water potentials, stem water potentials, andtranspiration rates, hydraulic resistances were calculated forthe whole plant, leaf, and below leaf components. Mycorrhizalinfection (as high as 89%) was shown to have no effect on theintrinsic hydraulic properties of the soil/plant system overa wide range of transpiration rates in either soil when M andNM plants of equivalent root length were compared. When grownin the soil of moderate phosphorus availability, calculatedhydraulic resistances under given environmental conditions werethe same for M and NM plants, as were stomatal resistances andtranspiration rates. When grown in the soil of low phosphorusavailability, calculated values of hydraulic resistance werelower for M plants than for NM plants under given sets of environmentalconditions. These differences in calculated hydraulic resistancewere not due to a difference in the intrinsic hydraulic propertiesof M and NM plants. The differences were evident because stomatalresistances were lower and transpiration rates higher for Mplants and because hydraulic resistance varied inversely withtranspiration rate. When plants of significantly greater rootlength were compared to plants of lesser root length, the calculatedhydraulic resistances under given environmental conditions weremuch lower for the plants of greater root length. This differencewas largely due to a difference in the intrinsic hydraulic propertiesbetween large and small plants, and not because of differencesin transpiration rate. The elevated transpiration rates exhibitedby M plants were attributed to an enhanced phosphorus status.Short term phosphorus amendments made to phosphorus-deficientNM plants improved transpiration; transpiration rates were similarfor M and NM plants before NM plants became phosphorus-deficient,and phosphorus-amended M and NM plants had similar transpirationrates. The data are discussed in relation to other reports ofmycorrhizal influence on hydraulic and stomatal resistances.Possible mechanisms for the influence of infection on stomatalresistance are also briefly discussed. Key words: Hydraulic resistance, stomatal resistance, mycorrhizas  相似文献   

13.
The impact of the grape leafhopper,Empoasca vitis, on leaf gas exchange, plant growth, yield, fruit quality and carbohydrate reserves of the grapevines,Vitis vinifera L., was studied. Gas exchange was measured on the discolored (red) and the green parts of infested main leaves and on leaves from uninfested vines. Photosynthesis and mesophyll conductance were severely reduced on main leaves showing leafhopper feeding symptoms. The stomatal conductance of the red leaf section of infested main leaves was lower than on undamaged control leaves. Additionally, the red leaf section of infested main leaves showed lower transpiration rates when compared to the green parts of the same leaves and to undamaged control leaves. Gas exchange processes of lateral leaves were not affected by leafhopper feeding. Leafhopperload on main leaves was correlated to visual damage symptoms. At 71.8 leafhopper-days per leaf up to 40% of the main leaf area of the infested plants was discolored from the borders towards the center. Lateral leaves showed no feeding symptoms. Shoot diameter, pruning weight and carbohydrate reserves in the wood were not affected by leafhoppers. Lateral leaf area growth was significantly stimulated on plants infested by leafhoppers. No decrease in yield and fruit quality with leafhopper-loads up to 71.8 leafhopper-days per leaf were observed.  相似文献   

14.
Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA‐deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole‐plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf‐epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.  相似文献   

15.
The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.5-fold increase in the root to leaf dry mass ratio. The leaf hydraulic conductance expressed on a leaf area basis was similar for the dAS compared with the control plants. As a result, the hydraulic conductance of the whole plant was unchanged. Under sufficient and under water-deficient conditions, stomatal conductance, transpiration rate, plant hydraulic conductance, leaf water potential, osmotic pressure, and turgor pressure were similar for the dAS compared with the control plants. However, after 4 d of rewatering following 8 d of drying, the control plants recovered their hydraulic conductance and their transpiration rates faster than the dAS plants. Moreover, after rewatering, the leaf water potential was significantly higher for the control than for the dAS plants. From these results, we conclude that the PIPs play an important role in the recovery of Arabidopsis from the water-deficient condition.  相似文献   

16.
With the development of pineapple [Ananas comosus (L.) Merr.] as a fresh fruit crop, it became common to force inflorescence development with ethephon [(2-chloroethyl)phosphonic acid] or ethylene throughout the year. Environmental induction (EI) of inflorescence development disrupts scheduling of fruit harvest and may cause significant losses if small plants are induced, resulting in fruits that are too small to be marketable. Our objective was to identify plant growth regulators (PGRs) that could inhibit EI. Because circumstantial evidence indicates that EI occurs in response to naturally produced ethylene or changes in plant sensitivity to it, most work was done with PGRs that inhibit ethylene biosynthesis or block ethylene action. The synthetic auxin 2-(3-chlorophenoxy)propionic acid (CPA) was included because in one study it reduced the percentage of EI. GA3, aminooxyacetic acid (AOA), aminoethoxyvinylglycine (AVG), daminozide [butanedioic acid mono-(2,2-dimethylhydrazide)], and silver thiosulfate (STS) had no effect on EL CPA, paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)methyl-4,4-dimethyl-2(1h-1,2,4-triazol-1-yl)penten-3-ol], and uniconazole [(E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol] delayed or inhibited EI of pot-grown pineapple plants. Uniconazole and paclobutrazol inhibited growth and ethylene production by leaf basal-white tissue, and either or both effects could account for the inhibition of EI. Production of 1-aminocyclopropane-1-carboxylic acid (ACC) was unaffected by these compounds, but the activity of ACC oxidase, which converts ACC to ethylene, was inhibited and probably accounts for the reduced ethylene production by leaf basal-white tissue. CPA stimulated ethylene production by stem apical tissue approximately fourfold relative to the control. ACC oxidase activity and the malonyl-ACC (MACC) content in stem apical tissue were also greater than in the control, indicating that CPA greatly stimulated the production of ACC and its sequestration into MACC. The mechanism by which CPA delayed or inhibited EI is not known. CPA, paclobutrazol, and uniconazole appear to have some potential for inhibiting EI of pineapple. Their effect on yield needs to be determined.Abbreviations ACC oxidase 1-aminocyclopropane-1-carboxylic acid oxidase - CPA 2-(3-chlorophenoxy)propionic acid - AOA aminooxyacetic acid - AVG aminoethoxyvinylglycine - daminozide butanedioic acid mono-(2,2-dimethylhydrazide) - DM dry mass - ethephon [(2-chloroethyl)phosphonic acid] - FM fresh mass - GA gibberellin - EI environmental induction of inflorescence development - IA inflorescence appearance - LSD Fisher's protected least significant difference - MACC malonyl-ACC - NAA naphthaleneacetic acid - PGR plant growth regulator - paclobutrazol (2RS,3RS)-1-(4-chlorophenyl)methyl-4,4-dimethyl-2-(1h-1,2,4-triazol-1-yl)penten-3-ol] - uniconazole (E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol - STS silver thiosulfate - M-leaf fourth leaf - Ml-L first leaf younger than M-leaf  相似文献   

17.
Stomatal behavior and water relations of waterlogged tomato plants   总被引:10,自引:5,他引:5       下载免费PDF全文
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.  相似文献   

18.
Two experiments, a split-root experiment and a root pressurizing experiment, were performed to test whether hydraulic signalling of soil drying plays a dominant role in controlling stomatal closure in herbaceous bell pepper plants. In the split-root experiment, when both root parts were dried, synchronous decreases in stomatal conductance (gs), leaf water potential (LWP) and stem sap flow (SFstem) were observed. The value of gs was found to be closely related to soil water potential (SWP) in both compartments. Tight relationships were observed between gs and stem sap flow under all conditions of water stress, indicating a complete stomatal adjustment of transpiration. When the half-root system has been dried to the extent that its water uptake dropped to almost zero, declines in gs of less than 20% were observed without obvious changes in LWP. The reduced plant hydraulic conductance resulting from decreased sap flow and unchanged LWP may be a hydraulic signal controlling stomatal closure; the results of root pressurizing supported this hypothesis. Both LWP and gs in water-stressed plants recovered completely within 25 min of the application of root pressurizing, and decreased significantly within 40 min after pressure release, indicating the hydraulic control of stomatal closure. Our results are in contrast to those of other studies on other herbaceous species, which suggested that chemical messengers from the roots bring about stomatal closure when plants are in water stress.  相似文献   

19.
The objectives of this comparative study were to investigate the responses of biomass accumulation and partitioning to nitrogen supply and to examine the effect of low-nitrogen supply on the photosynthetic responses of maize leaves to steady-state and dynamic light. While the difference in leaf number and stem diameter was not statistically significant, there was a significant difference in plant height between the low-nitrogen and high-nitrogen maize plants. During grain-filling period, the ear leaf of the low-nitrogen maize plants possessed lower values of maximum photosynthetic rate, maximum stomatal conductance, maximum transpiration rate, apparent quantum yield, light compensate point, and carboxylation efficiency than did that of the high-nitrogen maize plants. Contrarily, lower values of intercellular CO2 concentration and dark respiration rate were observed in the high-nitrogen maize plants. In addition, a slower response to simulated sunflecks was found in the ear leaf of the low-nitrogen maize plants; however, stomatal limitations did not operate in the ear leaf of the high-nitrogen or low-nitrogen maize plants during the photosynthetic induction. As compared to the high-nitrogen maize plants, the low-nitrogen maize plants accumulated much less plant biomass but allocated a greater proportion of biomass to belowground parts. In conclusion, our results suggested that steady-state photosynthetic capacity is restricted by both biochemical and stomatal limitation and the photosynthetic induction is constrained by biochemical limitation alone in low-nitrogen maize plants, and that maize crops respond to low-nitrogen supply in a manner by which more biomass was allocated preferentially to root tissues.  相似文献   

20.
植物生长延缓剂对盆栽月季生长发育的影响   总被引:1,自引:0,他引:1  
采用不同质量浓度的3种植物生长延缓剂多效唑(PP333)、矮壮素(CCC)、缩节胺(DPC),运用叶喷和灌根两种处理方式,通过测定植株的形态指标(株高、节间长、叶片长与宽、花枝长、花梗长、花径及初花期等)和生理生化指标(叶绿素含量、光合速率、蒸腾速率、叶片酶活性及可溶性糖含量等),研究3种药剂对盆栽月季‘世纪之春’生长发育的影响。结果表明:(1)不同药剂的使用浓度和方式对盆栽月季的形态和生理指标有不同程度的影响,适宜浓度和方式处理能缩短植株节间长度来降低株高,使株型饱满,开花正常,提高观赏价值;同时可以增加叶片叶绿素含量,提高光合效率,增加叶片超氧化物歧化酶和过氧化物酶活性及可溶性糖含量,对改善盆栽月季观赏品质有重要影响;(2)叶面喷洒700mg.kg-1 PP333和灌根300mg.kg-1 PP333的调控效果最好,喷洒1 200mg.kg-1CCC和300mg.kg-1 DPC效果次之,均能达到有效降低株高和提高观赏效果的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号