首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ror2, a member of the mammalian Ror family of receptor tyrosine kinases, plays important roles in developmental morphogenesis, although the mechanism underlying activation of Ror2 remains largely elusive. We show that when expressed in mammalian cells, Ror2 associates with casein kinase Iepsilon (CKIepsilon), a crucial regulator of Wnt signaling. This association occurs primarily via the cytoplasmic C-terminal proline-rich domain of Ror2. We also show that Ror2 is phosphorylated by CKIepsilon on serine/threonine residues, in its C-terminal serine/threonine-rich 2 domain, resulting in autophosphorylation of Ror2 on tyrosine residues. Furthermore, it was found that association of Ror2 with CKIepsilon is required for its serine/threonine phosphorylation by CKIepsilon. Site-directed mutagenesis of tyrosine residues in Ror2 reveals that the sites of phosphorylation are contained among the five tyrosine residues in the proline-rich domain but not among the four tyrosine residues in the tyrosine kinase domain. Moreover, we show that in mammalian cells, CKIepsilon-mediated phosphorylation of Ror2 on serine/threonine and tyrosine residues is followed by the tyrosine phosphorylation of G protein-coupled receptor kinase 2, a kinase with a developmental expression pattern that is remarkably similar to that of Ror2. Intriguingly, a mutant of Ror2 lacking five tyrosine residues, including the autophosphorylation sites, fails to tyrosine phosphorylate G protein-coupled receptor kinase 2. This indicates that autophosphorylation of Ror2 is required for full activation of its tyrosine kinase activity. These findings demonstrate a novel role for CKIepsilon in the regulation of Ror2 tyrosine kinase.  相似文献   

2.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

3.
The chimeric EK-receptor (EK-R), consisting of the epidermal growth factor receptor (EGF-R) extracellular binding domain and p145c-kit cytoplasmic signal-generating sequences, was fully functional in forming high and low affinity EGF binding sites and in ligand-regulated receptor and substrate phosphorylation activities. Relative to EGF-R, EK-R activation stimulated kit-characteristic phosphorylation of human 293 fibroblast substrate polypeptides. Transient coexpression of EK-R with candidate substrates resulted in ligand-induced phosphorylation of phospholipase C gamma and guanosine triphosphatase-activating polypeptide. The RAF-1 serine/threonine kinase was shown to be associated with activated EK-R, but no tyrosine phosphorylation could be detected. The faithfulness of EK-R substrate phosphorylation specificity was confirmed with stem cell factor-stimulated p145c-kit.  相似文献   

4.
The product of the c-kit proto-oncogene, denoted Kit/SCF-R, encodes a tyrosine kinase receptor for stem cell factor (SCF). Kit/SCF-R induces proliferation, differentiation or migration of cells within the hematopoietic, gametogenic and melanogenic lineages at different developmental stages. We report here that protein kinase C (PKC) mediates phosphorylation of Kit/SCF-R on serine residues in response to SCF or PMA in intact cells. The phosphorylation inhibits SCF-induced tyrosine autophosphorylation of Kit/SCF-R. In vitro studies showed that PKC phosphorylated the Kit/SCF-R directly on serine residues and inhibited autophosphorylation of Kit/SCF-R, as well as its kinase activity towards an exogenous substrate. The PKC-induced phosphorylation did not affect Kit/SCF-R ligand binding affinity. Inhibition of PKC led to increased SCF-induced tyrosine autophosphorylation, as well as increased SCF-induced mitogenicity. In contrast, PKC was necessary for SCF-induced motility responses, including actin reorganization and chemotaxis. Our data suggest that PKC is involved in a negative feedback loop which regulates the Kit/SCF-R and that the activity of PKC determines whether the effect of SCF will be preferentially mitogenic or motogenic.  相似文献   

5.
The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and constitutively phosphorylated on serine and weakly on threonine residues. In this study, we have mapped constitutive phosphorylation sites for casein kinases, protein kinase C, and an unidentified kinase on the KIR cytoplasmic domain. Three of these phosphorylation sites are highly conserved in human inhibitory KIR. Functional studies of the wild-type receptor and serine/threonine mutants indicated that phosphorylation of Ser(394) by protein kinase C slightly suppresses KIR3DL1 inhibitory function, and reduces receptor internalization and turnover. Our results provide evidence that serine/threonine phosphorylation is an important regulatory mechanism of KIR function.  相似文献   

6.
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.  相似文献   

7.
B Tang  H Mano  T Yi    J N Ihle 《Molecular and cellular biology》1994,14(12):8432-8437
Stem cell factor (SCF) plays a crucial role in hematopoiesis through its interaction with the receptor tyrosine kinase c-kit. However, the signaling events that are activated by this interaction and involved in the control of growth or differentiation are not completely understood. We demonstrate here that Tec, a cytoplasmic, src-related kinase, physically associates with c-kit through a region that contains a proline-rich motif, amino terminal of the SH3 domain. Following SCF binding, Tec is tyrosine phosphorylated and its in vitro kinase activity is increased. Tyrosine phosphorylation of Tec is not detected in the response to other cytokines controlling hematopoiesis, including colony-stimulating factor-1 (CSF-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3). Conversely, the cytoplasmic kinase JAK2 is activated by IL-3 but not by SCF stimulation. The activation of distinct cytoplasmic kinases may account for the synergy seen in the actions of SCF and IL-3 on hematopoietic stem cells.  相似文献   

8.
We previously reported that activation of mitogen-activated protein kinase (MAPK) is involved in the mitogenic stimulation of normal human melanocytes (NHMC) by endothelin-1 (ET-1). In the present study, we determined signaling mechanisms upstream of MAPK activation that are involved in ET-1 stimulation and their synergism with stem cell factor (SCF). Pretreatment of cultured NHMC with ET(B) receptor antagonists, pertussis toxin, a specific phospholipase C inhibitor (), or a protein kinase C inhibitor (calphostine) blocked a transient tyrosine phosphorylation of MAPK induced by ET-1, whereas the addition of a calcium chelator (BAPTA) failed to inhibit that tyrosine phosphorylation of MAPK. Treatment with ET-1 and SCF together synergistically increased DNA synthesis, which was accompanied by synergism for MAPK phosphorylation. The time course of inositol 1,4,5-trisphosphate formation revealed that there is no difference in the level of inositol 1,4,5-trisphosphate stimulated by ET-1 + SCF or by ET-1 alone. Evaluations of the serine phosphorylation of MEK and Raf-1 activity showed a synergistic effect in SCF + ET-1-treated NHMC. Stimulation with SCF + ET-1 induced a more rapid and stronger tyrosyl phosphorylation of proteins corresponding to p52 and p66 Shc than did stimulation with SCF only, and this was accompanied by a stronger association of tyrosine-phosphorylated Shc with Grb2. Interestingly, a more rapid and marked tyrosine phosphorylation of c-kit was also detected in NHMC-treated with SCF + ET-1 than NHMC treated with SCF only. These data indicate that the synergistic cross-talk between SCF and ET-1 signaling is initiated through the pathway of tyrosine phosphorylation of c-kit, which results in the enhanced formation of the Shc-Grb(2) complex which leads in turn to the synergistic activation of the Ras/Raf-1/MEK/MAP kinase loop.  相似文献   

9.
A Mn2(+)-dependent serine/threonine protein kinase from rat liver membranes copurifies with the insulin receptor (IR) on wheat germ agglutinin (WGA)-sepharose. The kinase is present in a nonactivated form in membranes but can be activated 20-fold by phosphorylating the WGA-sepharose fraction with casein kinase-1 (CK-1), casein kinase-2 (CK-2), or casein kinase-3 (CK-3). The activated kinase can use IR beta-subunit, myelin basic protein, and histones as substrates. Activation of the kinase seems to proceed by two or more steps. Sodium vanadate and Mn2+ are required in reaction mixtures for activation to be observed, whereas the tyrosine kinase-specific substrate, poly (glu, tyr), completely inhibits activation. These observations suggest that, in addition to serine/threonine phosphorylation by one of the casein kinases, activation of the Mn2(+)-dependent protein kinase also requires tyrosine phosphorylation. Such phosphorylation may be catalyzed by the IR tyrosine kinase.  相似文献   

10.
11.
12.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

13.
In the moss Ceratodon purpureus a phytochrome gene encodes a phytochrome type (PhyCer) which has a C-terminal domain homologous to the catalytic domain of eukaryotic protein kinases (PKs). PhyCer exhibits sequence conservation to serine/ threonine as well to tyrosine kinases. Since PhyCer is expressed very weakly in moss cells, to investigate the proposed PK activity of PhyCer, we overexpressed PhyCer transiently in fibroblast cells. For this purpose we made a chimeric receptor, EC-R, which consists of the extracellular, the membrane-spanning and the juxtamembrane domains of the human epidermal growth-factor receptor (EGF-R) linked to the PK catalytic domain of PhyCer (CerKin). The expression of EC-R in transiently transfected cells was confirmed with antibodies directed against the extracellular domain of EGF-R or against CerKin. Both EGF-R and EC-R were immunoprecipitated from lysates of overexpressing cells with antibodies against the extracellular domain of EGF-R. Phosphorylation experiments were performed with the immunoprecipitates and the phosphorylation products were subjected to phosphoamino acid analysis. Phosphorylation products specifically obtained with EC-R-transfected cells exhibit phosphorylation on serine and threonine residues. In EC-R transfected cells the endogenous EGF-R showed enhanced phosphorylation of serine and threonine residues compared to EGF-R immuno-precipitated from control cells. Although CerKin is closest to the catalytic domain of a protein tyrosine kinase from Dictyostelium discoideum, EC-R does not appear to phosphorylate tyrosine residues in vitro. From our data we conclude that PhyCer carries an active PK domain capable of phosphorylating serine and threonine residues.Abbreviations CerKin protein kinase catalytic domain of PhyCer - EC-R chimeric receptor consisting of the extracellular, the membrane spanning and the juxtamembrane domains of the human epidermal growth factor receptor (EGF-R) linked to the protein kinase catalytic domain of PhyCer - EGF-R epidermal growth factor receptor - mAb monoclonal antibody - PhyCer phytochrome gene in Ceratodon encoding a phytochrome type which has a C-terminal domain homologous to the catalytic domain of eucaryotic protein kinases - PK protein kinase - PVDF polyvinyl difluoride - Ser serine - Thr threonine - Tyr tyrosine Dr. Patricia Algarra was supported by the Alexander von Humboldt Foundation, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.  相似文献   

14.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   

15.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta superfamily, play a variety of roles during mouse development. BMP type II receptor (BMPR-II) is a type II serine/threonine kinase receptor, which transduces signals for BMPs through heteromeric complexes with type I receptors, including activin receptor-like kinase 2 (ALK2), ALK3/BMPR-IA, and ALK6/BMPR-IB. To elucidate the function of BMPR-II in mammalian development, we generated BMPR-II mutant mice by gene targeting. Homozygous mutant embryos were arrested at the egg cylinder stage and could not be recovered at 9.5 days postcoitum. Histological analysis revealed that homozygous mutant embryos failed to form organized structure and lacked mesoderm. The BMPR-II mutant embryos are morphologically very similar to the ALK3/BMPR-IA mutant embryos, suggesting that BMPR-II is important for transducing BMP signals during early mouse development. Moreover, the epiblast of the BMPR-II mutant embryo exhibited an undifferentiated character, although the expression of tissue-specific genes for the visceral endoderm was essentially normal. Our results suggest that the function of BMPR-II is essential for epiblast differentiation and mesoderm induction during early mouse development.  相似文献   

16.
Down-regulation of receptor tyrosine kinase activity plays an essential role in coordinating and controlling cellular growth/differentiation. Ca2+/calmodulin-dependent kinase II (CaM kinase II)-mediated phosphorylation of threonine 1172 in the cytoplasmic tail of HER2/c-erbB2 can modulate tyrosine kinase activity and consensus phosphorylation sites are also found at serines 1046/1047 in the structurally related epidermal growth factor receptor (EGFR). We show that serines 1046/1047 are sites for CaM kinase II phosphorylation, although there is a preference for serine 1047, which resides within the consensus -R-X-X-S-. In addition, we have identified major phosphorylation sites at serine 1142 and serine 1057, which lie within a novel -S-X-D- consensus. Mutation of serines 1046/1047 in full-length EGFR enhanced both fibroblast transformation and tyrosine autokinase activity that was significantly potentiated by additional mutation of serines 1057 and 1142. A single CaM kinase II site was also identified at serine 744 within sub-kinase domain III, and autokinase activity was significantly affected by mutation of this serine to an aspartic acid making this site appear constitutively phosphorylated. We have addressed the mechanism by which CaM kinase II phosphorylation of the EGFR might regulate receptor autokinase activity and show that this modification can hinder association of the cytoplasmic tail with the kinase domain to prevent an enzyme-substrate interaction. We postulate that the location and greater number of CaM kinase II phosphorylation sites in the EGFR compared with HER-2/c-erbB2, leading to differential regulation of autokinase activity, contributes to differences in the strength of downstream signaling events and may explain the higher relative transforming potential of HER-2/cerbB2.  相似文献   

17.
Phosphorylation of the insulin receptor beta-subunit on serine/threonine residues by protein kinase C reduces both receptor kinase activity and insulin action in cultured cells. Whether this mechanism regulates insulin action in intact animals was investigated in rats rendered insulin-resistant by 3 days of starvation. Insulin-stimulated autophosphorylation of the partially purified hepatic insulin receptor beta-subunit was decreased by 45% in starved animals compared to fed controls. This autophosphorylation defect was entirely reversed by removal of pre-existing phosphate from the receptor with alkaline phosphatase, suggesting that increased basal phosphorylation on serine/threonine residues may cause the decreased receptor tyrosine kinase activity. Tryptic removal of a C-terminal region of the receptor beta-subunit containing the Ser/Thr phosphorylation sites similarly normalized receptor autophosphorylation. To investigate which kinase(s) may be responsible for such increased Ser/Thr phosphorylation in vivo, protein kinase C and cAMP-dependent protein kinase A in liver were studied. A 2-fold increase in protein kinase C activity was found in both cytosol and membrane extracts from starved rats as compared to controls, while protein kinase A activity was diminished in the cytosol of starved rats. A parallel increase in protein kinase C was demonstrated by immunoblotting with a polyclonal antibody which recognizes several protein kinase C isoforms. These findings suggest that in starved, insulin-resistant animals, an increase in hepatic protein kinase C activity is associated with increased Ser/Thr phosphorylation which in turn decreases autophosphorylation and function of the insulin receptor kinase.  相似文献   

18.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

19.
The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to the modulation of insulin signaling, and the PKC-dependent phosphorylation of insulin receptor substrate (IRS)-1 has been implicated in the development of insulin resistance. Here we demonstrate Ser(357) of rat IRS-1 as a novel PKC-delta-dependent phosphorylation site in skeletal muscle cells upon stimulation with insulin and phorbol ester using Ser(P)(357) antibodies and active and kinase dead mutants of PKC-delta. Phosphorylation of this site was simulated using IRS-1 Glu(357) and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation of Akt, and to subsequently diminish phosphorylation of glycogen synthase kinase-3. When the phosphorylation was prevented by mutation of Ser(357) to alanine, these effects of insulin were enhanced. When the adjacent Ser(358), present in mouse and rat IRS-1, was mutated to alanine, which is homologous to the human sequence, the insulin-induced phosphorylation of glycogen synthase kinase-3 or tyrosine phosphorylation of IRS-1 was not increased. Moreover, both active PKC-delta and phosphorylation of Ser(357) were shown to be necessary for the attenuation of insulin-stimulated Akt phosphorylation. The phosphorylation of Ser(357) could lead to increased association of PKC-delta to IRS-1 upon insulin stimulation, which was demonstrated with IRS-1 Glu(357). Together, these data suggest that phosphorylation of Ser(357) mediates at least in part the adverse effects of PKC-delta activation on insulin action.  相似文献   

20.
The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号