首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
In the fission yeast Schizosaccharomyces pombe, the gld1 + gene encoding glycerol dehydrogenase is repressed by glucose and induced by ethanol and 1-propanol. The promoter region of gld1 + was cloned into a multicopy vector designated as pEG1 for evaluation as an ethanol-inducible expression vector using EGFP as a model heterologous protein. Expression of EGFP was repressed in the presence of high glucose and induced in the presence of ethanol, low-glucose, and 1-propanol in the absence of glucose. Addition of ethanol to cells harboring pEG1–EGFP was found to be the most effective means for inducing EGFP production. Protein yields were found to increase in proportion to ethanol concentration. As a further test of effectiveness, secreted recombinant human growth hormone was produced using the pEG1 expression vector in medium containing glycerol and ethanol. The pEG1 gene expression system is an effective tool for the production of heterologous proteins under glucose-limiting conditions, including medium containing glycerol as a carbon source.  相似文献   

2.
Dihydroxyacetone (DHA) has numerous industrial applications. In this work, we pursue the idea to produce DHA from sugars in the yeast Saccharomyces cerevisiae, via glycerol as an intermediate. Firstly, three glycerol dehydrogenase (GDH) genes from different microbial sources were expressed in yeast. Among them, the NAD+-dependent GDH of Hansenula polymorpha showed the highest glycerol-oxidizing activity. DHA concentration in shake-flask experiments was roughly 100 mg/l DHA from 20 g/l glucose, i.e. five times the wild-type level. This level was achieved only when cultures were subjected to osmotic stress, known to enhance glycerol production and accumulation in S. cerevisiae. Secondly, DHA kinase activity was abolished to prevent conversion of DHA to dihydroxyacetone phosphate (DHAP). The dak1Δdak2Δ double-deletion mutant overexpressing H. polymorpha gdh produced 700 mg/l DHA under the same conditions. Although current DHA yield and titer still need to be optimized, our approach provides the proof of concept for producing DHA from sugars in yeast.  相似文献   

3.
The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD+-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1Δ and gpd2Δ were studied under alcoholic fermentation conditions. gpd1Δ mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2Δ mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1Δ) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1Δ) but a slight decrease in the strain ANG2 (gpd2Δ). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1Δ) and ANG2 (gpd2Δ) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast.  相似文献   

4.
The only species of fission yeasts capable of growing on glycerol or dihydroxyacetone were Schizosaccharomyces pombe and S. malidevorans. When growing on glycerol or grown on glucose until it was exhausted, these species contained glycerol:NAD+ 2-oxidoreductase and dihydroxyacetone kinase but no glycerol kinase, consistent with utilization of glycerol via dihydroxyacetone. When grown to exhaustion of glucose, S. octosporus, S. slooffiae and S. japonicus contained dihydroxyacetone kinase but no glycerol:NAD+ 2-oxidoreductase or glycerol kinase. Prior to exhaustion of glucose in the medium, all species contained dihydroxyacetone kinase, all species except S. japonicus contained glycerol:NADP+ 2-oxidoreductase, and only S. pombe and S. malidevorans contained glycerol:NAD+ 2-oxidoreductase. Possible roles for the glycerol:NAD+ 2-oxidoreductase, glycerol:NADP+ 2-oxidoreductase and dihydroxyacetone kinase in metabolism of glycerol and dihydroxyacetone are discussed.Non-standard abbreviations DHA dihydroxyacetone - DHAK dihydroxyacetone kinase - DHAP dihydroxyacetone phosphate - GK glycerol kinase - G2DH-NAD glycerol - NAD+ 2-oxidoreductase - G2DH-NADP glycerol - NADP+ 2-oxidoreductase - MEA malt extract agar - YEP yeast extract phosphate medium  相似文献   

5.
Two inducible NADP+-dependent glycerol dehydrogenase (GlcDH) activities were identified in Mucor circinelloides strain YR-1. One of these, denoted iGlcDH2, was specifically induced by n-decanol when it was used as sole carbon source in the culture medium, and the second, denoted iGlcDH1, was induced by alcohols and aliphatic or aromatic hydrocarbons when glycerol was used as the only substrate. iGlcDH2 was found to have a much broader substrate specificity than iGlcDH1, with a low activity as an ethanol dehydrogenase with NAD+ or NADP+ as cofactor. Both isozymes showed an optimum pH for activity of 9.0 in Tris-HCl buffer and are subject to carbon catabolite repression. In contrast, the constitutive NADP+-dependent glycerol dehydrogenases (GlcDHI, II, and III) were only present in cell extracts when the fungus was grown in glycolytic carbon sources or glycerol under oxygenation, and their optimum pH was 7.0 in Tris-HCl buffer. In addition to these five NADP+-dependent glycerol dehydrogenases, a NAD+-dependent alcohol dehydrogenase is also present in glycerol or n-decanol medium; this enzyme was found to have weak activity as a glycerol dehydrogenase.  相似文献   

6.
7.
Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol yield in the presence of glycerol using xylose as a substrate. With an inactivated lactate pathway and expressed glycerol dehydrogenase activity, the metabolism of the cells was shifted toward the production of ethanol over acetate, hence restoring the redox balance. It was also shown that strain BG1G1 acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield.  相似文献   

8.
Instead of the conventional carbon sources used for propionic acid biosynthesis, the utilization of glycerol is considered here, since the metabolic pathway involved in the conversion of glycerol to propionic acid is redox-neutral and energetic. Three strains, Propionibacterium acidipropionici, Propionibacterium acnes and Clostridium propionicum were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerol. P. acidipropionici showed higher efficiency in terms of fermentation time and conversion yield than did the other strains. The fermentation profile of this bacterium consisted in propionic acid as the major product (0.844 mol/mol), and in minimal by-products: succinic (0.055 mol/mol), acetic (0.023 mol/mol) and formic (0.020 mol/mol) acids and n-propanol (0.036 mol/mol). The overall propionic acid productivity was 0.18 g l−1h−1. A comparative study with glucose and lactic acid as carbon sources showed both less diversity in end-product composition and a 17% and 13% lower propionic acid conversion yield respectively than with glycerol. Increasing the initial glycerol concentration resulted in an enhanced productivity up to 0.36 g l−1h−1 and in a maximal propionic acid concentration of 42 g/l, while a slight decrease of the conversion yield was noticed. Such a propionic acid production rate was similar or higher than the values obtained with lactic acid (0.35 g l−1h−1) or glucose (0.28 g l−1h−1). These results demonstrated that glycerol is a carbon source of interest for propionic acid production. Received: 15 July 1996 / Received revision: 11 November 1996 / Accepted: 11 November 1996  相似文献   

9.
Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD+-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD+-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD+ was preferred over NADP+ as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l−1 to 2.07 g l−1) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l−1 to 9.65 g l−1) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.  相似文献   

10.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

11.
The potential of the dried yeast, wild-type Schizosaccharomyces pombe, to remove Ni(II) ion was investigated in batch mode under varying experimental conditions including pH, temperature, initial metal ion concentration and biosorbent dose. Optimum pH for biosorption was determined as 5.0. The highest equilibrium uptake of Ni(II) on S. pombe, q e, was obtained at 25 °C as 33.8 mg g−1. It decreased with increasing temperature within a range of 25–50 °C denoting an exothermic behaviour. Increasing initial Ni(II) concentration up to 400 mg L−1 also elevated equilibrium uptake. No more adsorption took place beyond 400 mg L−1. Equilibrium data fitted better to Langmuir model rather than Freundlich model. Sips, Redlich–Peterson, and Kahn isotherm equations modelled the investigated system with a performance not better than Langmuir. Kinetic model evaluations showed that Ni(II) biosorption process followed the pseudo-second order rate model while rate constants decreased with increasing temperature. Gibbs free energy changes (ΔG°) of the system at 25, 30, 35 and 50 °C were found as −1.47E + 4, −1.49E + 4, −1.51E + 4, and −1.58E + 4 J mol−1, respectively. Enthalpy change (ΔH°) was determined as −2.57E + 3 J mol−1 which also supports the observed exothermic behaviour of the biosorption process. Entropy change (ΔS°) had a positive value (40.75 J mol−1 K−1) indicating an increase in randomness during biosorption process. Consequently, S. pombe was found to be a potential low-cost agent for Ni(II) in slightly acidic aqueous medium. In parallel, it has been assumed to act as a separating agent for Ni(II) recovery from its aqueous solution.  相似文献   

12.
Unlike their counterparts in budding yeast Saccharomyces cerevisiae, the glycoproteins of Schizosaccharomyces pombe contain, in addition to α-d-mannose (Man), a large number of α-d-galactose (Gal) residues. In both yeasts, large outer chains are attached to the oligosaccharide cores of glycoproteins during export via Golgi. Formation of the yeast-specific large outer chain is initiated by α-1,6-mannosylatransferase encoded by the och1 + gene, the disruption of which blocked outer chain elongation. We previously reported that N-linked oligosaccharide structures of S. pombe och1Δ mutant consisted of Gal2–6Man9GlcNAc2 with α-linked Gal residues attached to the core oligosaccharide moiety. The disruption of gms1 +, a gene encoding the UDP-galactose transporter required for the synthesis of galactomannan, abolished cell surface galactosylation in S. pombe. In this study, we constructed a gms1Δoch1Δ double mutant and determined the N- and O-linked oligosaccharide structures present on the cell surface. Oligosaccharides were liberated from glycoproteins by hydrazinolysis and labeled with the fluorophore, 2-aminopyridine. The pyridylaminated N-linked oligosaccharides were analyzed by high-performance liquid chromatography in combination with α1,2-mannosidase digestion and partial acetolysis. These analyses revealed that the N-linked oligosaccharides of gms1Δoch1Δ cells consisted of α1,2-linked Man-extended core oligosaccharides (Man8–12GlcNAc2) from which the fission yeast-specific α-linked Gal residues were completely absent.  相似文献   

13.
The GPD2 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpdP PGK -gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpdP PGK -GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ max) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.  相似文献   

14.
We report the conversion of glycerol to pyruvate by E. coli ALS929 containing knockouts in the genes encoding for phosphoenolpyruvate synthase, lactate dehydrogenase, pyruvate formate lyase, the pyruvate dehydrogenase complex, and pyruvate oxidase. As a result of these knockouts, ALS929 has a growth requirement of acetate for the generation of acetyl CoA. In steady-state chemostat experiments using excess glycerol and limited by acetate, lower growth rates favored the formation of pyruvate from glycerol (0.60 g/g at 0.10 h−1 versus 0.44 g/g at 0.25 h−1), while higher growth rates resulted in the maximum specific glycerol consumption rate (0.85 g/g h at 0.25 h−1 versus 0.59 g/g h at 0.10 h−1). The presence of glucose significantly improved pyruvate productivity and yield from glycerol (0.72 g/g at 0.10 h−1). In fed-batch studies using exponential acetate/glucose-limited feeding at a constant growth rate of 0.10 h−1, the final pyruvate concentration achieved was about 40 g/L in 36 h. A derivative of ALS929 which additionally knocked out methylglyoxal synthase did not further increase pyruvate productivity or yield, indicating that pyruvate formation was not limited by accumulation of methylglyoxal.  相似文献   

15.
NAD-dependent Thermotoga maritima glycerol dehydrogenase (TmGlyDH) converts glycerol into dihydroxyacetone (DHA), a valuable synthetic precursor and sunless tanning agent. In this work, recombinant TmGlyDH was characterized to determine if it can be used to catalyze DHA production. The pH optima for glycerol oxidation and DHA reduction at 50 °C were 7.9 and 6.0, respectively. Under the conditions tested, TmGlyDH had a linear Arrhenius plot up to 80 °C. TmGlyDH was more thermostable than other glycerol dehydrogenases, remaining over 50 % active after 7 h at 50 °C. TmGlyDH was active on racemic 1,2-propanediol and produced (R)-1,2-propanediol from hydroxyacetone with an enantiomeric excess above 99 %, suggesting that TmGlyDH can also be used for chiral synthesis. (R)-1,2-propanediol production from hydroxyacetone was demonstrated for the first time in a one-enzyme cycling reaction using glycerol as the second substrate. Negative cooperativity was observed with glycerol and DHA, but not with the cofactor. Apparent kinetic parameters for glycerol, DHA, and NAD(H) were determined over a broad pH range. TmGlyDH showed little activity with N6-carboxymethyl-NAD+ (N6-CM-NAD), an NAD+ analog modified for easy immobilization to amino groups, but the double mutation V44A/K157G increased catalytic efficiency with N6-CM-NAD+ ten-fold. Finally, we showed for the first time that a GlyDH is active with immobilized N6-CM-NAD+, suggesting that N6-CM-NAD+ can be immobilized on an electrode to allow TmGlyDH activity in a system that reoxidizes the cofactor electrocatalytically.  相似文献   

16.
A comparative study was carried out in anaerobic batch cultures on 20 g/l of either glycerol or glucose using two propionibacteria strains, Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. In all cases, fermentation end-products were the same and consisted of propionic acid as the major product, acetic acid as the main by-product and two minor metabolites, n-propanol and succinic acid. Evidence was provided that greater production of propionic acid by propionibacteria was obtained with glycerol as carbon and energy sources. P. acidipropionici showed higher efficiency in glycerol conversion to propionic acid with a faster substrate consumption (0.64 g l−1 h−1) and a higher propionic acid production (0.42 g l−1 h−1 and 0.79 mol/mol). The almost exclusive production of propionic acid from glycerol by this bacterium suggested an homopropionic tendency of this fermentation. Acetic acid final concentration was two times lower on glycerol (2 g/l) than on glucose (4 g/l) for both micro-organisms. P. freudenreichii ssp. shermanii exhibited a glycerol fermentation pattern typical of non-associated glycerol-consumption-product formation. This could indicate a particular metabolism for P. freudenreichii ssp. shermanii oriented towards the production of other specific components. These results tend to show that glycerol could be an excellent alternative to conventional carbon sources such as carbohydrates for propionic acid production. Received: 21 May 1999 / Accepted: 1 November 1999  相似文献   

17.
The gene dak1 encoding a dihydroxyacetone kinase (DHAK) isoenzyme I, one of two isoenzymes in the Schizosaccharomyces pombe IFO 0354 strain, was cloned and sequenced. The dak1 gene comprises 1743 bp and encodes a protein of 62 245 Da. The deduced amino acid sequence showed a similarity to a putative DHAK of Saccharomyces cerevisiae and DHAK of Citrobacter freundii. The dak1 gene was expressed at a high level in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The acetone powder of recombinant E. coli cells was used to produce dihydroxyacetone phosphate. Received: 25 August 1998 / Received revision: 22 September 1998 / Accepted: 11 October 1998  相似文献   

18.
Abstract

Glycerol dehydrogenase (GlyDH) which oxidizes glycerol to the value-added chemical, 1,3-dihydroxyacetone, is of interest due to the oversupply of glycerol as a by-product of the biodiesel industry. To exploit the enzymatic oxidation of glycerol industrially, silica coated magnetic Fe3O4 nanoparticles were prepared and then activated with an amino-silane reagent for covalent immobilization of GlyDH via a glutaraldehyde linkage. At the optimal glutaraldehyde concentration of 0.05% (v/v), an enzyme loading of up to 57.5 mg/g-nanoparticles was achieved with 81.1% of the original activity retained. Reaction kinetic analysis indicated that the immobilized GlyDH had almost the same Michaelis-Menten constants for both NAD+ and glycerol as the free GlyDH did. However, after immobilization the turnover number kcat of the GlyDH decreased from 164 s?1 to 113 s?1, and the reaction was 1.3-fold less sensitive to inhibition by DHA, which could compensate the decrease in kcat. The immobilized GlyDH was also less sensitive to changes in pH and temperature, and showed a 5.3-fold improvement in thermal stability at 50°C. Furthermore, excellent reusability was observed such that 10 cycles of re-use only led to 9% loss of enzyme activity.  相似文献   

19.
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   

20.
The yeast Candida glycerinogenes produces a high yield of glycerol only in response to a medium-osmotic stress, but little is known about the relationship between osmoadaptation and glycerol metabolism. The CgTPI gene encoding triose phosphate isomerase of C. glycerinogenes was cloned and sequenced, and its functionality was confirmed by complementation of Saccharomyces cerevisiae tpi1 Δ. The roles of CgTpip in the glycerol biosynthesis and the osmoadaptation were investigated. Unlike S. cerevisiae tpi1 Δ and Klyuveromyces lactis tpi1 Δ, the mutant lacking CgTPI significantly decreased the rate of glucose consumption and the glycerol yield. Furthermore, the mutants decreased osmotolerance to glucose and NaCl. The results suggest that CgTPI might be crucial for a high yield of glycerol by C. glycerinogenes. The inhibition of glycerol biosynthesis might be related to the reduced ability of osmoadaptation to high external osmolarity. To our knowledge, this is the first report that inactivation of a yeast TPI gene inhibits the biosynthesis of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号