首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transformed root tissue of Beta vulgaris (Detroit Dark Red) was permeabilized to stimulate the release of intracellularly stored betanin without adverse affects on tissue viability as measured by biomass accumulation. Product release of up to 15% (w/w) was achieved by heat treatment at 42°C for 45 min with minimal effect on viability. Higher levels of product release were obtained with increasing temperature and exposure, but at the expense of viability. Viability was measured by comparing dry weight increases of permeabilized tissue 3 days after treatment vs non-permeabilized tissue over the same time interval. Recovery of heat-treated tissue was improved by addition of CaCl2 (20 mm for 10 min) post-heat treatment. Betanin release up to 15% was also obtained at ambient temperature (25°C) by addition of up to 20 mm (NH4)2SO4 in the presence of 1 mm ethylenediaminetetraacetic acid (EDTA). Correspondence to: A. A. DiIorio  相似文献   

2.
The objective of this study was to develop effective strategies for hypothermic preservation of immature porcine testis tissue to maintain structural integrity and cell viability. In Experiment 1, testes from 1-week-old piglets were used to study the effects of tissue sample size (as intact testes or fragments of 100-or 30 mg) and the use of one of 9 different media on hypothermic preservation of the testis tissue for 6 days. The examined media included: Dulbecco’s phosphate-buffered saline (DPBS), Dulbecco’s modified Eagle’s medium (DMEM), Leibovitz L15 (L15), L15 with fetal bovine serum (FBS, at 10%, 20% or 50%), HypoThermosol solution-FRS (HTS), Ham’s F12, and Media 199. On days 0, 3, and 6, testis tissues were digested to compare the cell survival rates. Tissue sections were also semi-quantitatively assessed to determine the efficiency of different preservation strategies. There was no effect of testis sample size (P > 0.05), but cell survival rates of testis cells isolated from preserved testis tissues changed depending on the media and day (P < 0.05). Testis tissue within HTS did not show morphological changes after 6 days. In Experiment 2, two of the top performing media (20% FBS-L15 and HTS) were selected for immunocytochemical detection of gonocytes. Proportions of gonocytes (%) in isolated testis cells, however, did not differ between the two media on days 0, 3, or 6. These results show that testis tissue can be maintained for 3 days at 4°C with high cell survival rate, and tissue morphology can be preserved for at least 6 days in HTS.  相似文献   

3.
秦艳杰  孙博林  李霞  王雪  金迪 《生态学报》2012,32(6):1755-1761
应用实时定量PCR技术对主要卵黄蛋白(Major yolk protein,MYP)基因在不同饥饿时期中间球海胆的体腔细胞、性腺、肠、胃中的转录表达差异进行了分析。结果表明,在正常状态下,MYP基因在体腔细胞、性腺、肠、胃等不同组织中的转录表达差异明显,肠中的表达量最高,其他组织中的表达量均较低。随饥饿时间的延长,MYP基因在体腔细胞中的表达量先迅速下降,而后稳定在较低水平,实验结束时下降至对照组的1.58%;在性腺中的表达量持续上升,实验结束时上升至对照组的679.75%;在肠中的表达量持续下降,实验结束时下降至对照组的33.33%;在胃中的表达量呈上升趋势,实验结束时上升至对照组的106.52倍。综合来看,饥饿状况下,中间球海胆肠中的MYP表达量持续下降,但仍是MYP的主要合成部位;性腺中MYP表达量持续上升,致使其MYP表达比重上升;胃、体腔细胞中表达量在饥饿过程中虽有变化,但总表达量很少,对MYP的整体表达影响不大。  相似文献   

4.
The cryopreservation of hen and rat brain spheroids was investigated. Brain spheroid cultures were prepared from 7-day-old hen embryos or 16-day-old rat embryos, by using a rotation-mediated culture system. The spheroids were cryopreserved in medium containing 5-15% dimethyl sulphoxide (DMSO) and stored in liquid nitrogen, by using a two-stage cooling procedure. The results show that the viability, as indicated by the total protein content of hen embryo brain spheroids at 24 hours, and at 3, 7 and 28 days after thawing, ranged from 45.5% to 64.2% of control values. It took 3 days for the post-thaw brain spheroids to stabilise, as indicated by their morphology and selected neural markers of functionality. These functions were maintained over a 28-day observation period. Spheroids cultured for 12-15 days in vitro before cryopreservation survived better than those that were cryopreserved after 5-7 days in vitro. The viability and biochemical functionality of spheroids after long-term (up to 6 months) storage were similar to those following short-term storage. The viability of rat brain spheroids cryopreserved in 15% DMSO, as indicated by total protein content, at 24 hours, and at 3 or 7 days after thawing, ranged from 23.1% to 32.1% of control values. This study shows for the first time that brain spheroids prepared from primary tissue can be successfully cryopreserved.  相似文献   

5.
6.
The effects of kinetin (6-furfurylaminopurine) on viability during storage of recalcitrant sal (Shorea robusta Gaertn. f.) seeds at low temperature (15°C) were investigated. The freshly mature sal seeds showed an absolute loss of viability within 6–7 dah (days after harvest) when stored at ambient or at 15°C (control). Storage of these seeds at 15°C after kinetin (10 ppm) treatment prolonged the viability period up to 35 days with 20% germination. The kinetin-treated seeds exhibited 100% germination up to 10 days compared with 3 days in controls. Measurements of leachate conductivity, ·O 2 and lipid peroxidation registered gradual increases from 0 dah onward to 35 dah with significantly low levels compared with controls. On the other hand, an enormous increase in superoxide dismutase activity was discernible for a longer duration (0–35 dah) in kinetin-treated seeds than in control seeds where it remained for 3 dah. The role of kinetin in prolonging seed viability by reducing the loss of leachates, lipid peroxidation, ·O 2, and enhancing of superoxide dismutase is discussed. Received October 7, 1997; accepted January 27, 1998  相似文献   

7.
Germinating rape seeds selected on the basis of newly-emerged radicles (1 ± 0.5 mm) were dried to an equilibrium moisture content (c. 11%) in air at 20°C and 80% relative humidity without loss of viability. Storage life of these low-moisture-content germinating (LMCG) seeds at 15°C was limited to 7 days before viability was significantly reduced. However, viability of LMCG seeds was maintained for 84 days in storage at -20°C. Longer periods in store reduced viability, but 96% of seeds still remained viable after 336 days at - 20°C. Increasing periods of storage at -20°C reduced the subsequent seed longevity at 15°C, indicating a reduction in vigour during storage. Storage under reduced pressure or in a nitrogen atmosphere had little significant effect on seed longevity. Reduction of moisture content below 11% using vacuum drying at a range of temperatures reduced seed vigour.  相似文献   

8.
Despite the successful transfer of mammalian in vitro techniques for use with fish and other vertebrates, little progress has been made in the area of invertebrate tissue culture. This paper describes the development of an in vitro technique for the culture of both cells in suspension and tissue explants from the gill, digestive gland and mantle of the zebra mussel (Dreissena polymorpha) and their successful maintenance in culture for up to 14 days. Cell suspensions from the gills and digestive gland were the most successful technique developed with viability >80% maintained for up to 8 days in culture, suitable for use in short term toxicity tests. Tissue explants from the mantle were also maintained in culture for up to 14 days. This paper describes the challenges involved in the development of a novel in vitro culture technique for aquatic invertebrates.  相似文献   

9.
The influence of equilibration time before vitrification on the viability of vitrified morula- to blastocyst-stage bovine embryos and in vivo viability of vitrified embryos following transfer to recipients were investigated. In experiment 1, the embryos were exposed to an equilibration solution (50% VSED) containing 12.5% v/v ethylene glycol and 12.5% v/v dimethyl sulfoxide in modified Dulbecco's phosphate buffered saline with 4 mg/ml BSA (m-PBS) for 1, 2 and 5 minutes at room temperature (22 to 24 degrees C). The embryos were then placed in 15mul vitrification solution (VSED) consisting of 25% v/v ethylene glycol and 25% v/v dimethyl sulfoxide in m-PBS and were loaded into 0.25 ml plastic straws at room temperature. After 30 seconds, the straws were placed in liquid nitrogen (LN(2)) vapor for 2 minutes, plunged and stored in LN(2). To thaw, the straws were warmed in water at 20 degrees C for 15 seconds and the contents of the straws were expelled into a plastic dish. The embryos were diluted in 0.5 M sucrose + m-PBS for 5 minutes and were cultured in TCM-199 supplemented with bovine oviductal epithelial tissue. Viability of the embryos was assessed by the forming or reforming of the blastocoele after 24 hours of culture. High in vitro survival rates (73 approximately 90%) of vitrified embryos were obtained after 1 and 2 minute equilibrations, but was reduced (P<0.05) after 5 minute equilibration. In Experiment 2, morula- to blastocyst-stage embryos were vitrified after 1 minute equilibration in 50% VSED and 30 seconds of exposure to VSED. The vitrified-warmed embryos were transferred to recipient heifers at 7 days after estrus (1 embryo per recipient). Five (38%) of 13 (40%) of 10 recipients that had received blastocysts were diagnosed as pregnant using ultrasonography 60 days following transfer.  相似文献   

10.
A recording volumetric spore trap was operated continuously amidst overwintered grape leaves in a vineyard at Walenstadt, Switzerland from early May to mid-July 1988. Ascospores of Pseudopezicula tracheiphila were captured in the air beginning 11 May and 96 % of the total seasonal release occurred between 16 May and 2 June. Rain always preceded ascospore release. However, trap catches were associated with the simulataneous cessation of rainfall, decreased relative humidity (RH), increased temperature, and drying of foliage. Maximum ascospore release occurred in the second hour, following commencement of drying. Ascospores discharged dry onto glass coverslips survived with greater than 60 % viability after 1, 3, and 6 days exposure to 10, 15, 20, and 25°C at 70 % RH. Only at 30°C was viability reduced to slightly less than 50 % after 6 days.  相似文献   

11.
Storage of Porcine Articular Cartilage at High Subzero Temperatures   总被引:3,自引:0,他引:3  
Objective: Transplantation of osteochondral allograft tissue can treat large joint defects but is limited by tissue availability, surgical timing, and infectious disease transmission. Fresh allografts perform the best but requirements for infectious disease testing delay the procedure with subsequent decrease in cell viability and function. Hypothermic storage at lower temperatures can extend tissue banking time without loss of cell viability and, therefore, increase the supply of allograft tissue. This study investigated the effects of different cryoprotectant solutions on intact AC at various subzero temperatures. Design: 10 mm porcine osteochondral dowels were immersed for 30 minutes in various combinations of solutions [(XVIVO, propylene glycol (51% w/w), sucrose (46% w/w)] cooled to various subzero temperatures (−10, −15, and −20 °C), and held for 30 min. After warming, 70 μm slices were stained with membrane integrity dyes, viewed under fluorescence microscopy and cell recovery calculated relative to fresh controls. Results: Results demonstrated excellent cell recovery (>75%) at −10°C provided ice did not form. Excellent cell recovery (>70%) occurred at −15°C in solutions containing 51% propylene glycol but formation of extra-matrix ice in other solutions resulted in significant cell loss. All groups had <6% cell recovery at −20°C and propylene glycol did not provide a protective effect even though extra-matrix ice did not form Conclusions: These results suggest that extra-matrix ice plays an important role in cell damage during cryopreservation. Excellent cell recovery can be obtained after storage at subzero temperatures if ice does not form. Hypothermic preservation at high subzero temperatures may extend AC storage time in tissue banks compared to current techniques.  相似文献   

12.
Summary

After brief incorporation with 3H-glycerol, neutral lipid synthesis is lower in coelomocytes from decerebrated worms than in coelomocytes from control worms, but later this relationship is reversed. The presence of the brain increases the synthesis of neutral lipid, especially triglycerides, by coelomo-cytes maintained in vitro. The release of triglycerides in vitro by previously labelled coelomocytes is also stimulated by cerebral endocrine factors.  相似文献   

13.
We have induced soft tissue detachment from the skeleton of two colonial hard corals of the Pocilloporid family, both in vivo and in vitro. A parallel was made between polyp “bail-out”, i.e. field and laboratory-observed detachment of tissue fragments alone from the skeleton, and the dissociation method used for initiation of coral primary cell cultures. The in vitro approach provided insights into the active cellular re-arrangement mechanisms underlying coral tissue detachment. Functional polyps were not regenerated. Viability of tissue isolates detached from coral skeleton was probed for their use as a model for short-term biological assays. Cell viability dropped from 70% to 30% within the first week maintenance in vitro. Short-term isolate cultures limited to 3 days are a compromise allowing attachment of coral cells, yet preserving viability at about 70% of the total coral cell population.  相似文献   

14.
Protoplasts were isolated enzymatically from the carrageenophyte red alga Grateloupia turuturu (Halymeniales, Rhodophyta) that occurs along the coast of the French Channel in Normandy. Effects of the main factors on the protoplast yield were identified to improve the isolation protocol. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 2% cellulase Onozuka R-10, 0.5% macerozyme R-10, 2% crude extract from viscera of Haliotis tuberculata, 0.8 M mannitol, 20 mM sodium citrate, 0.3% bovine serum albumin at 25°C, and 4-h incubation period. The protoplasts were approximately 5–15 μm in diameter, liberated mainly from the surface cell layers. Maximum yield was 1.5 × 107 protoplasts g-1 fresh tissue. The protoplasts underwent initial division after 14 days with a high density level of 1 × 106 cells mL-1 in culture medium and developed into microthalli of a line of two to six cells.  相似文献   

15.
Earthworms are useful indicators of soil quality and are widely used as model organisms in terrestrial ecotoxicology. The assessment of genotoxic effects caused by environmental pollutants is of great concern because of their relevance in carcinogenesis. In this work, the earthworm Eisenia andrei was exposed for 10 and 28 days to artificial standard soil contaminated with environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (1×10(-5), 1×10(-4), 2×10(-3)ppm). Micronucleus (MNi) induction was evaluated in earthworm coelomocytes after DNA staining with the fluorescent dye DAPI. In the same cells, the DNA damage was assessed by means of the alkaline comet assay. Induction of MNi in coelomocytes, identified according to standard criteria, was demonstrated. B[a]P exposure for 10 and 28 days induced a significant increase in MNi frequency. In TCDD-treated earthworms, a significant effect on chromosomal damage was observed at all the concentrations used; surprisingly, greater effects were induced in animals exposed to the lowest concentration (1×10(-5)ppm). The data of the comet assay revealed a significant increase in the level of DNA damage in coelomocytes of earthworms exposed for 10 and 28 days to the different concentrations of B[a]P and TCDD. The results show that the comet and MN assays were able to reveal genotoxic effects in earthworms exposed even to the lowest concentrations of both chemicals tested here. The combined application in E. andrei of the comet assay and the micronucleus test, which reflect different biological mechanisms, may be suggested to identify genotoxic effects induced in these invertebrates by environmental contaminants in terrestrial ecosystems.  相似文献   

16.
The aim of this study was to examine the effect of different temperatures and humidities on the infectivity of Echinococcus granulosus protoscolices. Eighteen dogs (6 groups, n = 3 each) were fed with offal mince harbouring approximately 20,000 protoscolices of E. granulosus of different viabilities. Dogs were infected with E. granulosus protoscolices of: (1) 5% viability at -10 degrees C and 50% relative humidity (RH); (2) 30% viability at 0 degrees C and 60% RH; (3) 20% viability at +10 degrees C and 65% RH; (4) 15% viability at +30 degrees C and 75% RH; (5) 11% viability at +40 degrees C and 80% RH; (6) 68% viability (control group). Dogs in each group were necropsied at 29-49 days post-infection. Mean intensities of E. granulosus recovered from dogs were 256.7 +/- 60.3 in the second group; 32.7 +/- 7.1 in the third group; 40.3 +/- 15.5 in the fourth group and 1533 +/- 513 in the control group. However, no parasites were recovered from the first and fifth groups. Results obtained in the present study show that larval stages could be infective for 1 to 4 weeks during spring, autumn or winter months when maximal temperatures are approximately 0-10 degrees C. In conclusion, cold-storage depots in slaughterhouses and abattoirs where sheep carcasses might be discarded should be kept at -20 degrees C for 2-3 days, dogs should be properly controlled and adequate control programmes must be established in areas where the disease is endemic.  相似文献   

17.
Cryopreservation of tissue engineered products by maintaining their structure and function is a prerequisite for large-scale clinical applications. In this study, we examined the feasibility of cryopreservation of tissue engineered bone (TEB) composed of osteo-induced canine bone marrow mesenchymal stem cells (cBMSCs) and partially demineralized bone matrix (pDBM) scaffold by vitrification. A novel vitreous solution named as VS442 containing 40% dimethyl-sulfoxide (DMSO), 40% EuroCollins (EC) solution and 20% basic culture medium (BCM) was developed. After being cultured in vitro for 8 days, cell/scaffold complex in VS442 was subjected to vitreous preservation for 7 days and 3 months, respectively. Cell viability, proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons being made with those cryopreserved in VS55 vitreous solution. Compared with that cryopreserved in VS55, cell viability and subsequent proliferative ability of TEB in VS442 after being rewarmed were significantly higher as detected by live/dead staining and DNA assay. The level of alkaline phosphatase (ALP) expression and osteocalcin (OCN) deposition in VS442 preserved TEB was also higher than those in the VS55 group since 3 days post-rewarm. Both cell viability and osteogenic capability of the VS55 group were found to be declined to a negligible level within 15 days post-rewarm. Furthermore, it was observed that extending the preservation of TEB in VS442 to 3 months did not render any significant effect on its survival and osteogenic potential. Thus, the newly developed VS442 vitreous solution was demonstrated to be more efficient in maintaining cellular viability and osteogenic function for vitreous cryopreservation of TEB over VS55.  相似文献   

18.
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25 ppt) to 10 °C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 °C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7 ppt cultures acclimated to each temperature and then transferred to 3.5 ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30 days (3.5 ppt, 2 °C: 0% viability), 60 days (3.5 ppt, 10 °C: 0% viability) and 90 days (7 ppt, 2 °C: 0.6 ± 0.7%; 7 ppt, 10 °C: 0.2 ± 0.2%).  相似文献   

19.
SYNOPSIS. Rabbit Encephalitozoon cuniculi were propagated in vitro using rabbit choroid plexus (RCP) cells. The organisms reached maximum titer and numbers by 15 days. The source and in vitro passage level of RCP cells moderately influenced the sensitivity of the cells to infection. Cells less than 1 week old were significantly less sensitive than older cells. A moderate increase in infectivity for RCP cells was demonstrated with increasing organism passage level in vitro. Rabbit E. cuniculi were not affected by penicillin-streptomycin or gentamicin in the culture medium. The organism survived more than 9 days in buffer at 37 C and least 24 days at 4 and 20 C. Storage at -70 C or in liquid nitrogen was successful for at least 6 months. Encephalitozoon cuniculi survived 60 but not 120 min at 56 C. They were killed after 10 min of autoclaving and by 2% (v/v) Lysol, 10% (v/v) formalin and 70% (v/v) ethyl alcohol. The organisms survived at least 24 h at pH 9 or pH 4 and were not affected by sonication, freezing and thawing, or distilled water but lost significant infectivity after 24 h in CsCl or 40% (w/v) sucrose.  相似文献   

20.
Summary— A mini organ culture of mouse gallbladder was developed as an alternative to primary cultures of epithelial cells of this organ. Small pieces of tissue were prepared and maintained in minimum essential Eagle medium with 10% foetal calf serum, for as long as 7 days. Qualitative and quantitative ultrastructural studies have been performed using electron microscopy. The viability of cells was evaluated by stereological quantification of endocytotic vesicles containing horseradish peroxidase and labelling of exocytotic glycoproteins with tannic acid. The morphology of tissue pieces during the 1st h of culturing and tissue isolated directly from animals exhibited no significant differences. However, after 4 h in culture degradative changes became evident in many cells. At that time, endo- and exocytosis were both dramatically reduced. After 24 h, the morphology, as well as endo- and exocytosis recovered and were comparable to the parameters of the tissue in vivo or after 1 h in culture. The endocytotic activity remained unchanged from day 1 to 7 of culturing, while the number of exocytotic vesicles gradually decreased after 2 days in culture. Our results prove that mini organ culture of gallbladder is morphologically and functionally comparable with the tissue in vivo and for studies of epithelium in culture it is more convenient than primary cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号