首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Controlling elevated blood triacylglycerol translates into substantial health benefits. The present study aimed to evaluate the triacylglycerol-lowering properties of (R)-α-lipoic acid (LA) once circulating triacylglycerol levels have become elevated, and identify the molecular targets of LA. Nine-week old male ZDF (fa/fa) rats were fed a chow diet supplemented with 3 g LA per kg diet or pair fed for two weeks (8 rats per treatment). We determined changes in blood triacylglycerol, insulin, non-esterified fatty acids, and ketone bodies concentrations. We analyzed the expression of genes and proteins involved in fatty acid and triacylglycerol metabolism in liver, epididymal fat, and skeletal muscle. Feeding LA to ZDF rats (a) corrected severe hypertriglyceridemia, (b) lowered abdominal fat mass, (c) raised circulating fibroblast growth factor-21 and Fgf21 liver gene expression, (d) repressed lipogenic gene expression of ATP-citrate synthase (Acly), acetyl-coA carboxylase 1 (Acaca), fatty acid synthase (Fasn), sn-glycerol-3-phosphate acyltransferase 1 (Gpam), adiponutrin (Pnpla3) in the liver and adipose tissue, (e) decreased hepatic protein levels of ACC1/2, FASN and 5′-AMP-activated protein kinase catalytic subunit α (AMPKα), (f) did not change phospho-AMPKα/AMPKα and phospho-ACC/ACC ratios, (g) stimulated liver gene expression of PPARα target genes carnitine O-palmitoyltransferase 1β (Cpt1b) and acyl-CoA thioesterase 1 (Acot1) but not carnitine O-palmitoyltransferase 1α (Cpt1a). This is evidence that short-term LA feeding to obese rats reverses severe hypertriglyceridemia. FGF21 may mediate the beneficial metabolic effects of LA.  相似文献   

2.
β-Oxidation of most fatty acids occurs in the mitochondria. However, β-oxidation for ω-3 polyunsaturated fatty acids (PUFAs) is distinct from abundant fatty acids and occurs in the peroxisomes. Since little is known about peroxisomal β-oxidation, here we report the synthesis of proposed intermediates of ω-3 PUFA β-oxidation steps in free fatty acid form having a conjugated double bond, a β-hydroxyl group, a β-olefin and a β-carbonyl group. These fatty acids can serve as authentic samples for biological experiments.  相似文献   

3.
Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.  相似文献   

4.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

5.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

6.
Rat liver mitochondria were examined for their ability to reduce dehydroascorbic acid to ascorbic acid in an -lipoic acid dependent or independent manner. The a-lipoic acid dependent reduction was stimulated by factors that increased the NADH dependent reduction of -lipoic acid to dihydrolipoic acid in coupled reactions. Optimal conditions for dehydroascorbic acid reduction to ascorbic acid were achieved in the presence of pyruvate, -lipoic acid, and ATP. Electron transport inhibitors, rotenone and antimycin A, further enhanced the dehydroascorbic acid reduction. The reactions were strongly inhibited by 1 mM iodoacetamide or sodium arsenite. Mitoplasts were qualitatively similar to intact mitochondria in dehydroascorbate reduction activity. Pyruvate dehydrogenase and -ketoglutarate dehydrogenase reduced dehydroascorbic acid to ascorbic acid in an -lipoic acid, coenzyme A, and pyruvate or -ketoglutarate dependent fashion. Dehydroascorbic acid was also catalytically reduced to ascorbic acid by purified lipoamide dehydrogenase in an -lipoic acid (K 0.5=1.4±0.8 mM) and lipoamide (K 0.5=0.9±0.3 mM) dependent manner.  相似文献   

7.
The -irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed.The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the -irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.  相似文献   

8.
9.
1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75-80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (+/-10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5'-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1.8-1.9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA.  相似文献   

10.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

11.
12.
Algae and cyanobacteria are colonisers of building fa?ades. A multivariate analysis of data gathered during a sampling campaign around France proved that precipitation, hygrometry, thermal amplitude, distance from the sea and proximity to vegetation were environmental parameters influencing this colonisation. Other influencing factors could be attributed to the nature of the fa?ade coating, mineral substrata being more frequently colonised, and to the architecture, favouring in some cases the formation of damp conditions and thus the colonisation of the building envelope.  相似文献   

13.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

14.
In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.  相似文献   

15.
The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn–soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn–soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary l-cysteine (2.5% or higher) is lethal for young chicks, but a similar level of dl-methionine, l-cystine or N-acetyl-l-cysteine causes no mortality. A supplemental dietary level of 3.0% l-cysteine (7× requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.  相似文献   

16.
Abstract

Algae and cyanobacteria are colonisers of building façades. A multivariate analysis of data gathered during a sampling campaign around France proved that precipitation, hygrometry, thermal amplitude, distance from the sea and proximity to vegetation were environmental parameters influencing this colonisation. Other influencing factors could be attributed to the nature of the façade coating, mineral substrata being more frequently colonised, and to the architecture, favouring in some cases the formation of damp conditions and thus the colonisation of the building envelope.  相似文献   

17.
H. Veen 《Planta》1972,103(1):35-44
Summary Transportand metabolism of -naphthaleneacetic acid -naphthaleneacetic acid, and -decalylacetic acid, all labelled with 14C in the carboxyl, group, were studied. Only -naphthaleneacetic acid is transported in a polar way. Most of the radioactivity in the tissue is in a low molecular form, either free or as immobilization products. The immobilization of -naphthaleneacetic acid is similar to that of -naphthaleneacetic acid. Immobilization of -decalylacetic acid is typically different. Bioassays showed -naphthaleneacetic acid as the sole biologically active component. It is concluded that stereo requirements necessary for biological activity are also required for polar auxin transport. It is further concluded that the observed specificity of the transport system is not related to the formation of immobilization products.  相似文献   

18.
The production of an antifungal spirostanol saponin designated SC-1 has been detected in cell suspension cultures of the Mexican species Solanum chrysotrichum. Batch cultures of a cell suspension obtained from hypocotyl derived calluses of this species were grown for 25 days in shake flasks containing Murashige & Skoog (MS) medium. Throughout the growth cycle, fresh and dry weight, SC-1 yield, and uptake of sucrose, glucose and fructose were determined. The effects of inoculum size and sucrose concentration on the biomass accumulation and synthesis of the active metabolite, were studied. The maximum SC-1 production, above 14 mg.g−1 (which was fifty times that of field grown plants), was reached after 20 days using a 2% inoculum and complete MS medium supplemented with 2 mgl−1 2,4-D, 2 mg l−1kinetin, and sucrose between 30 and 45 gl−1. . This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Vitamin K-dependent carboxylation of glutamic acid residues to γ-carboxyglutamic acid was demonstrated in proteins of lung microsomes. The carboxylation was 12% of that in liver microsomes per milligram of mierosomal protein. Carboxylation was very low with microsomes of untreated rats but increased with time up to 42 h after warfarin administration. Carboxylation was highest with microsomes from rats fed a vitamin K-deficient diet. This suggests that a protein(s) accumulates which can be carboxylated in vitro/J. Lung microsomes also catalyzed the vitamin K-dependent carboxylation of the peptide Phe-Leu-Glu-Glu-Leu. The peptide carboxylase activity was 9% of that obtained with liver microsomes. Vitamin K-dependent protein carboxylation required NADH or dithioerythritol, suggesting that vitamin K had to be reduced to the hydroquinone. Accordingly, vitamin K1 hydroquinone had carboxylating activity without added reducing agents. Menaquinone-3 was considerably more active than phylloquinone. The temperature optimum for carboxylation was around 27 °C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号