首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
Questions: Does the diversity of heathland vegetation change when subjected to experimental disturbances such as cutting and nitrogen fertilization? Do changes in the vegetation structure negatively affect the regeneration of the dominant species Calluna vulgaris? Is cutting an alternative method of conserving the diversity and maintaining the structure of heathlands in the Cantabrian Mountains? Location: Calluna vulgaris heathlands on the southern slopes of the Cantabrian Mountain range, NW Spain. Methods: A total of 60 plots were treated with different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (56 kg‐N.ha?1.yr?1). The changes in the cover values of the species present were monitored over a five year study period. The cover values were used to calculate abundance and species richness. Results: Fertilizing with nitrogen allows biodiversity to increase over time. However, the greatest biodiversity is associated with the cutting plus fertilization treatment, since cutting allows gaps to be opened that are easily colonized by pioneer annual species, while fertilization mainly favours an increase in the mean number of perennial herbs (graminoids and forbs). Increased perennial herb richness also corresponds to a rise in their cover values. The recovery of the dominant woody species in these communities, Calluna vulgaris, is not impeded by the increase in perennial herbs species' cover values. Conclusions: In the Calluna vulgaris heathlands studied, cutting plus fertilization allowed an increase in biodiversity over time. No displacement of the dominant woody species, Calluna vulgaris, is observed due to the presence of the perennial herbs. Cutting patches of heathland is recommended as a mechanism for maintaining high vegetation diversity, when grazing is not possible.  相似文献   

2.
Abstract. Succession was studied on plots with the upper soil horizon removed in an area affected by acidic air pollution in the Kru?né Hory Mts., Czech Republic. 10 permanent 1‐m2 plots were marked and vegetation recorded annually using a grid of 100 subplots from 1989 to 1995. Constrained ordination analyses showed that soil texture is the most important environmental factor influencing the course of succession. Its effect on species composition increases with successional age of the plant community. On fine‐grained soils species‐poor communities dominated by grasses (Calamagrostis villosa, Deschampsiaflexuosa) and on coarse‐grained soils species‐rich communities dominated by heather (Calluna vulgaris) developed. Succession proceeded from communities where species composition was determined by diaspore availability towards communities where species composition depended on environmental conditions. Successional communities after 10 yr are more dependent on soil characteristics and consequently environmental determination increases over the course of succession and causes the communities to diverge.  相似文献   

3.

Questions

Rhododendron ponticum subsp. baeticum is an invasive shrub of growing concern in continental Europe, but little is known about its impact on native plant communities. Here we ask: do environmental conditions differ between forest stands invaded by it and uninvaded stands? Do these differences correlate with R. ponticum's cover? Are these differences associated with differences in taxonomic and functional diversity of vascular plant species of the herb layer? Can these vegetation changes be explained by the sorting of certain life-history traits by R. ponticum-induced environmental changes?

Location

Several forests invaded by R. ponticum in the French Atlantic domain.

Methods

We recorded vegetation composition and a number of environmental variables in 400-m2 plots that were established in 64 paired forest stands (32 invaded vs 32 uninvaded). We compiled traits from existing databases. We computed several metrics of taxonomic and functional diversity. We compared environmental variables and diversity metrics between invaded and uninvaded stands. We used correlation and regression analyses to relate them with R. ponticum's cover. We ran RLQ and fourth-corner analyses to explore the relationships between R. ponticum invasion, environmental variables, species traits, and vegetation composition.

Results

Independent of its abundance, R. ponticum invasion was associated with lower light arrival at the forest floor and increased litter thickness. Concomitantly, species richness and diversity and trait diversity were reduced. The major driver of species assemblages was soil pH, which strongly interacted with the invasion gradient. R. ponticum did not sort species according to traits associated with shade tolerance and thick-litter tolerance. However, tree and shrub saplings were more abundant in invaded than uninvaded stands, at the expense of graminoid and fern species.

Conclusions

As R. ponticum becomes the dominant shrub, it exerts new selection forces on life-history traits of extant species, mostly via reduced light availability, increased litter thickness, and physical competition, thereby reducing taxonomic and functional diversity of the herb layer, without impeding tree and shrub self-regeneration, at least in the short term.  相似文献   

4.
Net primary productivity and the nitrogen, carbon, and energy contents of the leaf, aerial wood and root components of the five most important woody dominants in two xerophytic forests in central-west Argentina were measured. Nitrogen and carbon contents of litter and mineral soil beneath individual plant canopies were also studied. The woody dominants in the 8-yr old ‘chaco’ woodland in Chamical, La Rioja, covered a greater proportion of total community area but had less aerial biomass than the 5 woody dominants of the 50-yr-old openProsopis flexuosa woodland in Ñacuñán, Mendoza. Marked differences in net primary production among species of the two communities were also noted (29–115 kg aerial biomass ha?1 yr?1 in the Chamicalvs 51–524 kg ha?1 yr?1 in the Ñacuñán woodland). Nitrogen in vegetation varied by species, and within species, varied by season and plant component. In general, leaf-N was higher in legumes in summer than in non-legumes in summer, and for most species higher in summer than in winter. Differences in %N in other plant components and in per cent C among species and seasons were less consistent. In both communities, soil N and C were higher and more variable with depth under individual plant canopies than in non-vegetated areas, and differences among species were apparent.  相似文献   

5.
Aims Rhododendron ponticum L. is reputed to be a post Plio‐Pleistocene relict plant species with a disjunct distribution that comprises the Iberian Peninsula to the west and the Euxinian region plus some restricted Mediterranean areas to the east. We analysed the ecological range (of subsp. baeticum) in the western area (Aljibe Mountains, north of the Strait of Gibraltar) to understand the factors determining the present area limitation. Location Sierra del Aljibe, north of the Strait of Gibraltar (Iberian Peninsula). Methods We selected 20 riparian sites where R. ponticum is common, and compiled data on the ecological diversity of associated woody species and ferns. We established a 500‐m main transect in each site, along the stream or river course, in which we placed five 20‐m‐long plots at regular intervals. We recorded physiographic habitat features, woody plants and fern abundance, and the number of R. ponticum individuals. Results Rhododendron ponticum in southern Spain is restricted to riparian forests in acidic soils (pH 4.0–6.4), and is mainly found on the banks of inclined and enclosed streams. In our inventory we recorded 59 woody taxa and 12 ferns, with R. ponticum being the dominant species of the understorey (mean abundance 78.6%). The communities are characterized by a high incidence of the humid warm temperate element, both in number of species (18.8 ± 3.7 per site) and abundance; meanwhile, the presence of the modern Mediterranean element (mean number of species 3.4 ± 3.8 per site) appears to be favoured by disturbance. These ecological–historical groups of taxa also show distinct patterns of typological habit, frequency of endemism, infrageneric diversity and geographical range. Populations of R. ponticum are characterized by a very variable density of seedlings in many sites, and the virtual lack of juveniles. Main conclusions Riparian forests of the Aljibe Mountains constitute a refuge for R. ponticum where the species persists, but populations appear to be in decline. The narrow ecological range of R. ponticum in the area strongly contrasts with its wide amplitude in the eastern natural area, mainly the Euxinian region, where R. ponticum probably finds better conditions due to the environmental heterogeneity of the region, and the lack of a hot dry season.  相似文献   

6.
Vegetation-environment relations of a Middle Zambezi floodplain   总被引:2,自引:0,他引:2  
Dunham  Kevin M. 《Plant Ecology》1989,82(1):13-24
Detrended correspondence analysis was used to study the relationships between environmental factors and the species composition of vegetation on Zambezi River alluvium downstream of the Kariba hydroelectric dam. Grass, sedge and woody species were recorded in 73 stands in Mana Pools National Park, Zimbabwe. Grass and sedge species composition was related to the soil moisture regime, as indexed by soil texture and flooding frequency. The first woody plant ordination axis was related to a stand development gradient; Acacia albida was a pioneer species on lowlying sandbanks and the woody species richness of stands increased with their height above the Zambezi River. Two-way indicator species analysis identified 7 vegetation types which could be separated on the basis of their topsoil texture and flooding frequency. The types were: sandbanks; young A. albida woodland; A. albida woodland; A. albida dominated mixed woodland; mixed riverine woodland with understory; mixed riverine woodland; and grassland on clay soils.  相似文献   

7.
In 2005, a 7‐ha artificial watershed (Chicken Creek) was built on a post mined landscape in Lusatia, Germany from sandy substrates of Pleistocene origin, commonly used in reclamation. The watershed was developed to investigate the initial phase of soil and ecosystem development under natural conditions. At this early stage, mineral nitrogen in young sandy soils is primarily limited and nitrogen fixing legumes become key components of natural succession. Local abundant pioneering legumes Lotus corniculatus and Trifolium arvense and one pioneer grass species Calamagrostis epigeios were investigated 5 years after watershed construction. In this study, we investigated the influence of spatial root and nodule distribution of these species on soil nitrogen accumulation. Soil, including roots, was sampled from field monoliths covered with the aforementioned plant species. Root systems of both legumes were mainly restricted to the upper 20 cm of soil, whereas roots of C. epigeios also developed strongly at greater depths. A positive relationship was found, with higher plant densities associated with higher root densities which were associated with higher nodule densities for legumes and which were all associated with significantly higher soil nitrogen content relative to non‐vegetated areas. This research provides rare information on the role root systems of pioneer legumes play in soil nitrogen input in the early stage of soil and ecosystem development during revegetation by natural succession.  相似文献   

8.
An experiment was carried out in two heathland ecosystems, one dominated by Calluna vulgaris and the other by Molinia caerulea, to analyse the effects of soil organic matter accumulation and nutrient mineralization on plant species dynamics during succession. The experiment included one treatment that received nutrient solution and two treatments where the rate of soil organic matter accumulation was reduced by removing litter or accelerated by adding litter. In a fourth treatment the C. vulgaris litter produced in the C. vulgaris-dominated plots was replaced by litter of M. caerulea and vice versa. Treatments were applied over 8 years. Addition of nutrient solution caused C. vulgaris to decline, and grass species to increase sharply, compared to the control plots. Addition of litter enhanced both N mineralization and the biomass of M. caerulea and Deschampsia flexuosa but reduced the biomass of C. vulgaris. The effects of replacing C. vulgaris litter by M. caerulea litter, or vice versa, on N mineralization and species dynamics could not be attributed to differences between the decomposability of the different litter materials that were transferred. The results confirm the hypothesis that increased litter inputs accelerate the rate of species replacement during succession.  相似文献   

9.
Following removal of the invasive species Rhododendron ponticum, the native understorey plant community typically fails to reestablish itself. Potential explanations for this failure include (1) lack of an appropriate native seed source; (2) inability of seed to penetrate a dense bryophyte layer; and (3) persistence of chemical “legacy effects” in the soil. We established an experiment to test these competing hypotheses in an Atlantic oak woodland where R. ponticum had been removed. The following experimental treatments were applied singly and in combination: (1) addition of a native seed mix to test for seed limitation; (2) removal of the established ground vegetation at the start of the experiment (which principally consisted of bryophytes) to test for the impact of a barrier layer; (3) addition of activated carbon to test for chemical legacy effects in the soil; and (4) fertilization as an additional measure to promote the establishment of native vascular plants. Application of the native seed mix was revealed to be an effective way to increase the cover of native vascular plants and was particularly effective when applied after the removal of the bryophyte layer. The application of activated carbon and/or fertilizer, however, had no effect on the cover of native vegetation. We conclude that reports of R. ponticum exerting chemical legacy effects long after its removal may have been overstated and that seed limitation and inability to successfully establish in a dense bryophyte layer provided the strongest barriers to natural recolonization by the native plant community following R. ponticum removal.  相似文献   

10.
When invasive woody plants become dominant, they present an extreme challenge for restoration of native plant communities. Invasive Morella faya (fire tree) forms extensive, nearly monospecific stands in wet and mesic forests on the Island of Hawai’i. We used logging, girdling, and selective girdling over time (incremental girdling) to kill stands of M. faya at different rates, with the objective of identifying a method that best promotes native forest re-establishment. We hypothesized that rapid canopy opening by logging would lead to establishment of fast-growing, non-native invaders, but that slower death of M. faya by girdling or incremental girdling would increase the establishment by native plants adapted to partial shade conditions. After applying the M. faya treatments, seed banks, seed rain, and plant recruitment were monitored over 3 years. Different plant communities developed in response to the treatments. Increased light and nitrogen availability in the logged treatment were associated with invasion by non-native species. Native species, including the dominant native forest tree, (Metrosideros polymorpha) and tree fern (Cibotium glaucum), established most frequently in the girdle and incremental girdle treatments, but short-lived non-native species were more abundant than native species. A diverse native forest is unlikely to develop following any of the treatments due to seed limitation for many native species, but girdling and incremental girdling promoted natural establishment of major components of native Hawaiian forest. Girdling may be an effective general strategy for reestablishing native vegetation in areas dominated by woody plant invaders.  相似文献   

11.
Since 1985, originally forested mountainous areas of China have been allowed to return to their natural state after years of exploitation including agriculture, development, and logging. The reforms began earlier in less accessible locations, so that today the successional process is more advanced there. The vegetation in Luquan, Qiongzhusi, and Xishan near Kunming, central Yunnan, exhibits, in a limited area, a range of stages of plant succession that are widely encountered throughout the broader region, and thus affords a special opportunity for a comprehensive study. We analyzed the successional sequence of these various plant communities. They ranged from pioneer coniferous and/or pioneer deciduous broad-leaved stands to pre-mature semi-humid evergreen broad-leaved stands, through mixed coniferous and broad-leaved or mixed deciduous and evergreen broad-leaved stands. The succession proceeded from pioneer coniferous Pinus and Keteleeria, and deciduous Platycarya and Alnus, to late-successional evergreen broad-leaved Cyclobalanopsis and Castanopsis. Two regeneration types of woody species in either the early successional (15–50 years), the mid-successional (40–80 years), or the late-successional (80–180 years) stage were classified. Relatively high species diversity was found in the seral phase at the three study sites. The late-successional stage was commonest where human disturbance was least evident. Poor soil chemical properties under pioneer Pinus were seen as a limitation to plant growth, while the abundance of Alnus at the early stage led to an improved level of organic matter and nitrogen.  相似文献   

12.
Invasive species can increase the susceptibility of ecosystems to disease by acting as reservoir hosts for pathogens. Invasive hosts are often sparsely recorded and not in equilibrium, so predicting their spatial distributions and overlap with other hosts is problematic. We applied newly developed methods for modelling the distribution of invasive species to the invasive shrub Rhododendron ponticum—a foliar reservoir host for the Phytophthora oomycete plant pathogens, P. ramorum and P. kernoviae, that threaten woodland and heathland habitat in Scotland. We compiled eleven datasets of biological records for R. ponticum (1,691 points, 8,455 polygons) and developed Maximum Entropy (MaxEnt) models incorporating landscape, soil and climate predictors. Our models produced accurate predictions of current suitable R. ponticum habitat (training AUC = 0.838; test AUC = 0.838) that corresponded well with population performance (areal cover). Continuous broad-leaved woodland cover, low elevation (<400 m a.s.l.) and intermediate levels of soil moisture (or Enhanced Vegetation Index) favoured presence of R. ponticum. The high coincidence of suitable habitat with both core native woodlands (54 % of woodlands) and plantations of another sporulation host, Larix kaempferi (64 % of plantations) suggests a high potential for spread of Phytophthora infection to woodland mediated by R. ponticum. Incorporating non-equilibrium modelling methods did not improve habitat suitability predictions of this invasive host, possibly because, as a long-standing invader, R. ponticum has filled more of its available habitat at this national scale than previously suspected.  相似文献   

13.
In the past insufficient attention has been paid to quantitative measurements of resource fluxes in ecosystems that undergo successional change. In this study, simultaneous changes in seven plant resources (photosynthetically active radiation (PAR), water, nitrogen, phosphorus, calcium, magnesium and potassium) are quantified by a chronosequence approach for a 300-yr-long secondary succession on poor soil from Calluna vulgaris heathland to Fagus sylvatica-Quercus petraea late-successional forest (heathland-to-forest succession).Above-ground net primary production increases sevenfold, and total above-ground phytomass about fortyfold during heathland-to-forest succession. Plant organs that capture resources increase much more slowly (leaf area index: threefold; fine root biomass: 1.3-fold). The increase in productivity is based both on higher absorptivity and conversion efficiency of PAR by the canopies of the successional plants.Accumulation of organic material on the forest floor significantly improves soil water availability. Evapotranspiration losses increase early in succession as the growing vegetation increases in both height and leaf area but tend to decrease again in the late-successional community. Drainage losses are at their minimum at the conifer-dominated pioneer forest stage.Accumulation of available nutrients in the soil is a key process in heathland-to-forest succession that significantly improves plant nutrient availability but leads to only minor changes in carbon/nutrient ratios and humus quality. Litter decomposition rates increase and result in a more rapid nutrient turnover in late successional stages. External nutrient inputs (from the atmosphere and soil weathering) significantly contribute to plant nutrient supply early in succession, whereas the internal cycling of nutrients through litter fall and nutrient mineralisation by far exceeds external inputs at the late stages.Vitousek & Reiners' (1975) ecosystem nutrient loss hypothesis is supported by the heathland-to-forest succession data. Odum's (1969) hypotheses on how nutrient cycles change during the course of succession is, in one part, rejected, in part supported. Tilman's (1988) hypothesis on nutrient limitation early, and light limitation late in primary succession is rejected.  相似文献   

14.
The response of woody species to experimental burning, cutting andploughing was studied for a period of twelve years in a shrub community in NWSpain. The treatments represent the perturbations most frequently imposed bymanon these shrub communities throughout history. The response to burning is muchfaster than the response to cutting. The response to ploughing is slower due tothe regeneration mechanism that species use: germination. In general, thedominant species, Erica australis, influences theregeneration patterns of the rest of the species, which make up the community.There is a significant increase in the cover of woody species until the fourthyear, and of herbaceous species until the third year. Subsequently,Erica australis attains dominance, returning to itsoriginal spatial occupancy and cover values, removing the herbaceous speciesandnegatively influencing the growth of woody ones like Halimiumumbellatum, Halimium alyssoides and Quercuspyrenaica. Both Erica australis andChamaespartium tridentatum regenerated by sprouting in theburnt and cut plots, and by germination in the ploughed plot.Arctostaphylos uva-ursi only recovers after burning andploughing. Halimium alyssoides, Halimium umbellatum, Ericaumbellata and Calluna vulgaris regenerate bygermination in the three plots. Differences in cover values and spatialoccupancy during the first years of succession tend to be eliminated twelveyears after treatment and most of the species tend to recover their initialcover values. These shrubland communities have a high degree of resilience dueto the strong sprouting potential of the component species.  相似文献   

15.
Abstract. In the mountains of northern Spain, patches dominated by Calluna vulgaris are scarce and they may disappear or change as a result of continued lack of management and possibly increasing nutrient availability through atmospheric deposition. The effects in the soil properties and in the composition of Calluna vulgaris and Erica tetralix shoots on heathlands dominated by Calluna and Erica subjected to fertilization and experimental cutting were studied in three mountain passes in northern Spain. A total of 90 1‐m2 plots received different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (5.6 g.m?2.yr?1) as ammonium nitrate. One of the dominant ericaceous species (Calluna and Erica) was selectively cut by hand at ground level and their nitrogen shoot content were compared in the presence or absence of the other. Treatments were carried out in April 1998. In each plot one soil sample was taken in the original situation and 12, 24 and 36 months after the treatments. Soil properties such as organic matter, total nitrogen, available phosphorus and pH were determined. In every plot five shoots of Calluna and Erica were also taken to analyse total nitrogen content in the original situation and 12, 24 and 36 mo after the treatments. Nitrogen addition does not necessarily lead to increased levels in the soil, and a clear pattern was not found in the three areas. A gradual decrease in available phosphorus content was detected in the three areas until two years after treatment, although values tend to recover in two of the areas in the third study year. An increase in organic matter content was observed in all areas. It is concluded that increased nutrients alone, at twice the rate of the estimated current atmospheric deposition for the area, which is relatively low, will not alter significantly the soil characteristics of the mountain heathland stands. A clear increase in plant N‐content is observed in the fertilized plots in comparison with the non‐fertilized ones and Calluna always has higher nitrogen content than Erica. This increase is most pronounced one year after the treatments started in one of the areas and after two years in the other two areas. In some cases the elimination of one species is seen to favour nitrogen increase in the other.  相似文献   

16.
Questions: How does draining affect the composition of vegetation? Are certain functional groups favoured? Can soil parameters explain these differences? Location: Central Faroe Islands, treeless islands in the northern boreal vegetation zone. Since 1987, an area of 21 km2 at 100–200 m a.s.l. was drained in order to provide water for hydro‐electric production. Method: Vegetation and soil of a drained area and a control, undrained neighbouring area of approximately the same size were sampled in 2007. Six sites were sampled in each area. The vegetation was classified with cluster analysis. Results: Four plant communities were defined in the area: Calluna vulgarisEmpetrum nigrumVaccinium myrtillus heath, Scirpus cespitosusEriophorum angustifolium blanket mire, Carex bigelowiiRacomitrium lanuginosum moss‐heath, Narthecium ossifragumCarex panacea mire. Heath was more extensively distributed within, and was the dominant community of the drained area, whereas moss‐heath was more extensive in the undrained area. Blanket mire and mire had approximately the same distribution in both areas. For the blanket mire, species composition indicated drier conditions in the drained than in the undrained area. The drained area had higher frequencies of woody species and lichens, grasses had finer roots and available soil phosphate was considerably higher, whereas the undrained area had higher frequencies of grasses and sedges. Conclusion: The dominant plant communities were different in the two areas, which indicated that the blanket mire was drying in the drained area. Higher concentration of soil phosphate in the drained area also indicated increased decomposition of organic soils owing to desiccation.  相似文献   

17.
Summary Nitrogen accumulation was studied in mica and sand mining wastes of Cornwall after twelve forage legume varieties were established with the use of lime and fertilizers containing phosphorus and potassium. In the finetextured mica waste legume productivity and nitrogen accumulation were similar to those for upland pastures in Cornwall; but legume growth was limited by summer drought on the coarse-textured sand waste. Native perennial legumes well adapted to the British climate were the most productive and showed the highest potential for nitrogen fixation. More than 500 kg N/ha accumulated during the 2-year period whenTrifolium pratense andLotus corniculatus were established on mica waste, and more than 250 kg N/ha was accumulated by these legumes on sand waste.Trifolium pratense andLotus corniculatus were persistent on both the mica and sand waste, andMedicago lupulina showed an unusually high tolerance for competition from invading and sown grass on the sand waste.Trifolium repens andT. hybridum are recommended for waste sites where grazing is a part of management.Nitrogen accumulation on mica waste was consistent with N fixation rates expected from climatic conditions. Nitrogen fixation by free-living bacteria is limited by the low organic matter content of the wastes. The nitrogen fixation potential by legumes on sand wastes has been underestimated because leaching losses were not adequately evaluated. Since nitrogen accumulation rates by earlyTrifolium pratense andT. repens were 70 percent higher than the maximum rate estimated for natural legumesi.e. (Ulex europaeus) on sand waste, the use of forage legumes should reduce reclamation time considerably. re]19760512Department of Botany Liverpool University  相似文献   

18.
Abstract. Accumulation of nutrients in leaves of the dominating species of three ecosystems, characterizing the secondary succession from Genisto-Callunetum heathland through Leucobryo-Pinetum birch-pine woodland to mature Querco-Fagetum oak-beech forest, as well as nutrient turnover within these ecosystems was studied. The objective of the study was to establish potential variations in quantity and quality of nutrient supply to the plants with respect to succession dynamics. The results show very low leaf nutrient concentrations of all species investigated, coinciding with low nutrient availability in the soil. However, the nutrient content of leaves and leaf litter of Quercus petraea and Fagus sylvatica, which dominate the late succession stages, and in Betulapéndula are higher than in the photosynthetic organs (leaves and young shoots) of Calluna vulgaris and Pinus sylvestris. The combination of the higher nutrient content of the leaves and an increasing leaf-litter production during succession results in an increased nutrient turnover via leaf-litter fall. However, due to the high leaf biomass, the storage of nutrients in the leaf biomass is highest within the birch-pine woodland. From this, it may be assumed that the low demand and the low loss of nutrients via leaf-litter fall are favourable for Pinus at the early stages of forest succession on poor sandy soils. In contrast, Quercus and Fagus are provided with better growth conditions at the later stages of succession resulting from the accumulation of plant-available nutrients in the ecosystem by Pinus sylvestris, combined with a higher nutrient turnover as compared with the heathland.  相似文献   

19.
Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community.  相似文献   

20.
Long-Term Effects of Reclamation Treatments on Plant Succession in Iceland   总被引:3,自引:0,他引:3  
The long‐term effects (20–45 years) of reclamation treatments on plant succession are examined at two localities in Iceland that were fertilized and seeded from 1954 to 1979 with perennial grasses or annual grasses, or left untreated. The areas that underwent reclamation treatments had significantly higher total plant cover (7–100%) than the untreated control plots (<5%), and floristic composition was usually significantly different between treated and untreated plots. Dwarf‐shrubs (Calluna vulgaris and Empetrum nigrum), bryophytes, biological soil crust, grasses, and shrubs characterized the vegetation in the treated plots, but low‐growing herbs that have negligible effects on the environment, such as Cardaminopsis petraea and Minuartia rubella, and grasses characterized the control plots. The seeded grass species had declined (<10%, the perennials) or disappeared (the annuals) but acted as nurse species that facilitated the colonization of native plants. It seems that by seeding, some factors that limit plant colonization were overcome. Soil nutrients, vegetation cover, litter, and biological soil crust were greater in the treated areas than the control plots. This may have enhanced colonization through an increase in soil stability and fertility, increased availability of safe microsites, increased moisture, and the capture of wind‐blown seeds. This study demonstrates the importance of looking at the long‐term effects of reclamation treatments to understand their impact on vegetation succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号