首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The mouse polyubiquitin gene Ubb is essential for meiotic progression   总被引:1,自引:0,他引:1  
Ubiquitin is encoded in mice by two polyubiquitin genes, Ubb and Ubc, that are considered to be stress inducible and two constitutively expressed monoubiquitin (Uba) genes. Here we report that targeted disruption of Ubb results in male and female infertility due to failure of germ cells to progress through meiosis I and hypogonadism. In the absence of Ubb, spermatocytes and oocytes arrest during meiotic prophase, before metaphase of the first meiotic division. Although cellular ubiquitin levels are believed to be maintained by a combination of functional redundancy among the four ubiquitin genes, stress inducibility of the two polyubiquitin genes, and ubiquitin recycling by proteasome-associated isopeptidases, our results indicate that ubiquitin is required for and consumed during meiotic progression. The striking similarity of the meiotic phenotype in Ubb−/− germ cells to the sporulation defect in fission yeast (Schizosaccharomyces pombe) lacking a polyubiquitin gene suggests that a meiotic role of the polyubiquitin gene has been conserved throughout eukaryotic evolution.  相似文献   

2.
Ubiquitin (Ub) is one of the proteins that are highly conserved from yeast to humans. It is an essential core unit of the well-defined post-translational modification, called ubiquitination, which is involved in a variety of biological processes. In meta-zoans, Ub is encoded by two monoubiquitin genes and two polyubiquitin genes, in which a single Ub is fused to a ribosomal protein or Ub coding units are arranged in tandem repeats. In mice, polyubiquitin genes (Ubb and Ubc) play a pivotal role to meet the requirement of cellular Ub pools during embryonic development. In addition, expression levels of polyubiquitin genes are increased to adapt to environmental stimuli such as oxidative, heat-shock, and proteotoxic stress. Several researchers have reported about the perturbation of Ub pools through genetic alteration or exogenous Ub delivery using diverse model systems. To study Ub pool changes in a physiologically relevant manner, changing Ub pools via the regulation of endogenous polyubiquitin gene expression has recently been introduced. Furthermore, to understand the regulation of polyubiquitin gene expression more precisely, cis-acting elements and trans-acting factors, which are regulatory components of polyubiquitin genes, have been analyzed. In this review, we discuss how the role of polyu-biquitin genes has been studied during the past decade, es-pecially focusing on their regulation.  相似文献   

3.
Murine melanoma cells B16(F10) were stably transfected with a plasmid containing GFP gene linked to rat stress-inducible hsp70.1 gene promoter. Transfected cells show in vitro variable basal levels of fluorescence depending on stress response induced at physiological temperature by growth conditions. Lack of manipulations except medium change resulted in reduction of cellular fluorescence. GFP expression in experimental murine tumors dropped to levels undetectable at physiological temperature. Heat shock induced significant fluorescence of tumor cells both in vitro and in vivo. GFP protein could be a useful marker for studies of mammalian hsp70i gene promoters.  相似文献   

4.
The transient expression of foreign genes in the protoplasts of Porphyrayezoensis was examined using three recombinant vectors, pYez-Rub-GUS, pYez-Rub-GFP and pYez-Rub-LUC, which were constructed with the promoter sequence of the ribulose-bisphosphate-carboxylase / oxygenase (Rubisco) gene as a promoter and the bacterial β-glucuronidase (GUS), mutant of green fluorescent protein (S65T-GFP) and firefly luciferase (LUC) genes, respectively, as reporter genes. When the pYez-Rub-GUS was introduced into protoplasts by electroporation, cells stained dark blue by indigotin were observed after the histochemical GUS assay. GUS activity was also detected by quantitative enzyme assays with a chemiluminescent substrate. When the pYez-Rub-GFP was electroporated into protoplasts, the expression of GFP could be detected in vivo observations with fluorescence microscopy. However, the rates of gene expression cells to the total number of cells were different between the GUS and GFP genes. LUC activity was also detected by assay with a chemiluminescent substrate after the introduction of pYez-Rub-LUC into protoplasts, although the activity levels were considerably lower. Relatively high expression rates of introduced GUS genes were observed 3 to 5 days after electroporation. These results show that the promoter sequence of the chloroplast Rubisco gene functions as a promoter of foreign gene expression and that transient expression occurred in protoplasts of P. yezoensis after the introduction of foreign genes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A two-plasmid dual reporter Escherichia coli biosensor was developed using the genes for bacterial bioluminescence and a mutant of the green fluorescent protein, GFPuv4. To achieve this, the two plasmids, which were derivatives of pBR322 and pACYC184, had compatible origins of replication and different antibiotic selection markers: ampicillin and tetracycline. The parent strains DK1 and ACRG43, each carrying a single plasmid with one of the fusion genes (strain DK1 harboring a fusion of the katG promoter to the lux operon while in ACRG43, the recA promoter was fused with the GFP gene), were responsive to oxidative and DNA damage, respectively, resulting in higher bioluminescence or fluorescence under the relevant toxic conditions. The responses of the dual sensor strain, DUAL22, to various toxicants, e.g., mitomycin C, N-methyl-N-nitro-N-nitrosoguanidine, hydrogen peroxide and cadmium chloride, were characterized and compared with the responses of the parent strains to the same chemicals. Finally, several chemical mixtures that cause various stress responses were tested to demonstrate the ability of this biosensor to detect specific stress responses within a multiple toxicity environment.  相似文献   

6.
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.  相似文献   

7.
For evaluating the physiological status of cells, astringent response network was used. Fluorescence from intact E. coli, which has a plasmid encoding the green fluorescence protein (GFP) under the regulation of rpoS promoter, was monitored. Comparison of the response of different E. coli strains demonstrated an essential role of ppGpp in the expression of GFP, as it activated the rpoS promoter. The physiological status of intact cells, that depends on ppGpp accumulation in response to the nutritional status such as amino acid starvation, could therefore be monitored by measuring fluorescent intensity using this reporter gene.  相似文献   

8.
An engineered yeast with emission of fluorescence from the cell surface was constructed. Cell surface engineering was applied to display a visible reporter molecule, green fluorescent protein (GFP). A glucose-inducible promoter GAPDH as a model promoter was selected to control the expression of the reporter gene in response to environmental changes. The GFP gene was fused with the gene encoding the C-terminal half of α-agglutinin of Saccharomyces cerevisiae having a glycosylphosphatidylinositol anchor attachment signal sequence. A secretion signal sequence of the fungal glucoamylase precursor protein was connected to the N-terminal of GFP. This designed gene was integrated into the TRP1 locus of the chromosome of S. cerevisiae with homologous recombination. Fluorescence microscopy demonstrated that the transformant cells emitted green fluorescence derived from functionally expressed GFP involved in the fusion molecule. The surface display of GFP was further verified by immunofluorescence labeling with a polyclonal antibody (raised in rabbits) against GFP as the first antibody and Rhodamine Red-X-conjugated goat anti-rabbit IgG as the second antibody which cannot penetrate into the cell membrane. The display of GFP on the cell surface was confirmed using a confocal laser scanning microscope and by measuring fluorescence in each cell fraction obtained after the subcellular fractionation. As GFP was proved to be displayed as an active form on the cell surface, selection of promoters will endow yeast cells with abilities to respond to changes in environmental conditions, including nutrient concentrations in the media, through the emission of fluorescence. Received: 23 August 1999 / Received revision: 16 November 1999 / Accepted: 29 November 1999  相似文献   

9.

Abscisic acid-, stress-, ripening-induced (ASR) proteins are some of the most important small proteins involved in plant responses to abiotic stresses and hormone signals. Recently, BdASR1 was revealed to be upregulated in response to abiotic stresses and hormone treatments and regulate expression of stress-related genes and drought tolerance in tobacco plants. However, the biological and molecular functions of BdASR1 remain to be elucidated. Here, we isolated and characterized BdASR1-interacting protein using the yeast two-hybrid assay. The expression of the interaction protein, BdERF96, increased under drought and oxidative stress corresponding to the expression of BdASR1. Subcellular localization of BdERF96 was detected in the plasma membrane and nucleus. The interaction of BdASR1 and BdERF96 at the plasma membrane and nucleus was demonstrated using bimolecular fluorescence complementation analysis. The findings imply that BdERF96 in association with BdASR1 could play a role in the positive response to drought and oxidative stresses.

  相似文献   

10.
11.
12.
Candida albicans ubiquitin genes UBI3 and UBI4 encode a ubiquitin-hybrid protein involved in ribosome biogenesis and polyubiquitin, respectively. In this work we show that UBI3 and UBI4 promoter regions confer differential expression consistent with the function of their encoded gene products. Hybrid genes were constructed containing the SUC2 coding region under the control of UBI3 or UBI4 promoters in the yeast vector pLC7. Invertase production in Saccharomyces cerevisiae transformants was differentially regulated: the UBI4 promoter was induced by stress conditions (thermal upshift and/or starvation) whereas the UBI3 promoter conferred constitutive invertase production in growing yeast cells. These results indicate that the UBI4 promoter is regulated by stress-response signaling pathways, whereas the UBI3 promoter is controlled according to the requirement for protein synthesis to support cell growth. Electronic Publication  相似文献   

13.
14.
15.
Two tissue-specific promoters were used to express both green fluorescent protein (GFP) and red fluorescent protein (RFP) in transgenic zebrafish embryos. One promoter (CK), derived from a cytokeratin gene, is active specifically in skin epithelia in embryos, and the other promoter (MLC) from a muscle-specific gene encodes a myosin light chain 2 polypeptide. When the 2 promoters drove the 2 reporter genes to express in the same embryos, both genes were faithfully expressed in the respective tissues, skin or muscle. When the 2 fluorescent proteins were expressed in the same skin or muscle cells under the same promoter, GFP fluorescence appeared earlier than RFP fluorescence in both skin and muscle tissues, probably owing to a higher detection sensitivity of GFP. However, RFP appeared to be more stable as its fluorescence steadily increased during development. Finally, F1 transgenic offspring were obtained expressing GFP in skin cells under the CK promoter and RFP in muscle cells under the MLC promoter. Our study demonstrates the feasibility of monitoring expression of multiple genes in different tissues in the same transgenic organism.  相似文献   

16.
17.
Ubiquitin is an omnipresent protein found in all eukaryotes so far analysed. It is involved in several important processes, including protein turnover, chromosome structure and stress response. Parsley (Petroselinum crispum) contains at least two active polyubiquitin (ubi4) genes encoding hexameric precursor proteins. The deduced amino acid sequences of the ubiquitin monomers are identical to one another and to ubiquitin sequences from several other plant species. Analysis of the promoter region of one ubi4 gene revealed putative regulatory elements. In parsley plants, the ubi4 mRNAs were the predominant ubiquitin mRNAs and were present at comparable levels in all plant organs tested. In cultured parsley cells, high levels of ubiquitin gene expression remained unaffected by heat shock, elicitor or light treatment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号