首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cardiac sarcolemmal Na+-Ca2+ exchanger is modulated by intrinsic regulatory mechanisms. A large intracellular loop of the exchanger participates in the regulatory responses. We have proposed (Li, Z., D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, J.N. Weiss, J.M. Tomich, and K.D. Philipson. 1991. J. Biol. Chem. 266:1014–1020) that a segment of the large intracellular loop, the endogenous XIP region, has an autoregulatory role in exchanger function. We now test this hypothesis by mutational analysis of the XIP region. Nine XIP-region mutants were expressed in Xenopus oocytes and all displayed altered regulatory properties. The major alteration was in a regulatory mechanism known as Na+-dependent inactivation. This inactivation is manifested as a partial decay in outward Na+-Ca2+ exchange current after application of Na+ to the intracellular surface of a giant excised patch. Two mutant phenotypes were observed. In group 1 mutants, inactivation was markedly accelerated; in group 2 mutants, inactivation was completely eliminated. All mutants had normal Na+ affinities. Regulation of the exchanger by nontransported, intracellular Ca2+ was also modified by the XIP-region mutations. Binding of Ca2+ to the intracellular loop activates exchange activity and also decreases Na+-dependent inactivation. XIP-region mutants were all still regulated by Ca2+. However, the apparent affinity of the group 1 mutants for regulatory Ca2+ was decreased. The responses of all mutant exchangers to Ca2+ application or removal were markedly accelerated. Na+-dependent inactivation and regulation by Ca2+ are interrelated and are not completely independent processes. We conclude that the endogenous XIP region is primarily involved in movement of the exchanger into and out of the Na+-induced inactivated state, but that the XIP region is also involved in regulation by Ca2+.  相似文献   

2.
Use-dependent declines of Na+ currents in myelinated frog nerve fibres were measured during a train of depolarizing pulses in solutions containing tetrodotoxin (TTX) or saxitoxin (STX). The following effects of external monovalent (Na+), divalent (Ca2+, Mg2+) and trivalent (La2+) cations on use dependence were found: Increasing the Ca2+ concentration from 2 to 8 mM shifts its voltage dependence by 20 mV whereas no significant use-dependent decline occurred at 0.2 mM Ca2+. Doubling the external Na+ concentration in 0.2 mM Ca2+ solutions did not initiate phasic block. External Mg2+ ions induced a smaller, and La2+ ions a larger, use dependence. The time constants of the current decline were 4-fold greater in 1.08 mM La2+. The static block of Na+ currents by La3+ could be directly demonstrated by the relief of block during a train of pulses. The results are qualitatively explained by a toxin binding site at the Na+ channel whose affinity for TTX or STX depends oni) the gating conformation of the channel, probably the inactivation andii) the occupancy of a blocking site by di- or trivalent external cations.  相似文献   

3.
4.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

5.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

6.
We have used the patch clamp technique to study the effects of inhibiting the apical Na+ transport on the basolateral small-conductance K+ channel (SK) in cell-attached patches in cortical collecting duct (CCD) of the rat kidney. Application of 50 μM amiloride decreased the activity of SK, defined as nP o (a product of channel open probability and channel number), to 61% of the control value. Application of 1 μM benzamil, a specific Na+ channel blocker, mimicked the effects of amiloride and decreased the activity of the SK to 62% of the control value. In addition, benzamil reduced intracellular Na+ concentration from 15 to 11 mM. The effect of amiloride was not the result of a decrease in intracellular pH, since addition 50 μM 5-(n-ethyl-n-isopropyl) amiloride (EIPA), an agent that specifically blocks the Na/H exchanger, did not alter the channel activity. The inhibitory effect of amiloride depends on extracellular Ca2+ because removal of Ca2+ from the bath abolished the effect. Using Fura-2 AM to measure the intracellular Ca2+, we observed that amiloride and benzamil significantly decreased intracellular Ca2+ in the Ca2+-containing solution but had no effect in a Ca2+-free bath. Furthermore, raising intracellular Ca2+ from 10 to 50 and 100 nM with ionomycin increased the activity of the SK in cell-attached patches but not in excised patches, suggesting that changes in intracellular Ca2+ are responsible for the effects on SK activity of inhibition of the Na+ transport. Since the neuronal form of nitric oxide synthase (nNOS) is expressed in the CCD and the function of the nNOS is Ca2+ dependent, we examined whether the effects of amiloride or benzamil were mediated by the NO-cGMP–dependent pathways. Addition of 10 μM S-nitroso-n-acetyl-penicillamine (SNAP) or 100 μM 8-bromoguanosine 3′:5′-cyclic monophosphate (8Br-cGMP) completely restored channel activity when it had been decreased by either amiloride or benzamil. Finally, addition of SNAP caused a significant increase in channel activity in the Ca2+-free bath solution. We conclude that Ca2+-dependent NO generation mediates the effect of inhibiting the apical Na+ transport on the basolateral SK in the rat CCD.  相似文献   

7.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

8.
Meech  Robert W. 《Hydrobiologia》2004,530(1-3):81-89
In the jellyfish Aglantha digitale two forms of swimming arise from two separate propagating axonal impulses: a fast, overshooting action potential that depends on TTX-resistant Na+ channels, and a low-amplitude spike that depends on T-type Ca2+ channels. While the Na+ action potential is propagated simply and without distortion, the shape of the Ca2+ spike depends on the past history of the axon; it is processed as well as propagated. Patch- and voltage-clamp experiments show how three classes of K+ channels contribute to this apparently unique system. A dual Na+/Ca2+ impulse mechanism may increase the bandwidth of an axonal line of communication but it also places restrictions on the form of the synaptic input needed for spike initiation.  相似文献   

9.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

10.
Effects of the external Ca2+ concentration on the depolarization-induced transient inward Na+ current responsible for the Na+ spike in the dinoflagellate Noctiluca miliaris were examined. The peak value and the duration of the Na+ current increased when lowering the external Ca2+ concentration. The threshold potential level for activation and the reversal potential level of the current were not affected by the external Ca2+ concentration. The inactivation took place even in a solution containing EGTA with very low (<10–9 M) Ca2+ concentration. Voltage dependency of the inactivation was scarcely affected by the external Ca2+ concentration. It is concluded that inactivation of Na+ channels responsible for the current is dependent on membrane depolarization and that the external Ca2+ modulates the inactivation kinetics. Appearance of a Na+ spike in a solution with reduced Ca2+ concentration is caused by a lowered rate of inactivation of the Na+ channels.  相似文献   

11.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

12.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

13.
K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from neighbouring glial cells. Previous studies have focused on modulation of Ca2+ entry pathways that initiate signalling. Here we have investigated purinergic regulation of NCKX4, a powerful extrusion pathway that assists in terminating Ca2+ signals. NCKX4 activity was stimulated by ATP through activation of the P2Y receptor signalling pathway. Stimulation required dual activation of PKC (protein kinase C) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). Mutating T312, a putative PKC phosphorylation site on NCKX4, partially prevented purinergic stimulation. These data illustrate how purinergic regulation can shape the dynamics of Ca2+ signalling by activating a signal damping and termination pathway.  相似文献   

14.
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.  相似文献   

15.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

16.
Hepatic Na+-K+-ATPase and Mg2+-ATPase activities of male green lizards declined during the maturation phase (juvenile to 1-year-old) and stabilized thereafter. On the other hand, the Ca2+-ATPase activity of the liver declined during the later half of the life span (1-year-old to 2–4-year-old). Starvation stress induced a decline in hepatic Na+-K+-ATPase and Mg2+-ATPase activities of juvenile lizards and caused an increase in 1-year-old and 2–4-year-old counterparts. The Ca2+-ATPase activity declined only in starved 1-year-old lizards. Following cold stress, the hepatic Na+-K+-ATPase activity of juvenile lizards showed a higher degree of decline than 2–4-year-old counterparts. The Mg2+-ATPase activity declined in cold-stressed juvenile lizards, but the parameter was elevated in similarly treated 1-year-old lizards. On the other hand, the increase in Ca2+-ATPase activity in response to cold stress was confined only to 2–4-year-old lizards.  相似文献   

17.
Tissue-specific age-dependent changes were observed in Na+K+-, Ca2+-, and Mg2+-ATPase activities in tropical tasar silkworm, Antheraea mylitta Drury. Maximum enzyme activity was recorded in all the tissues on day 12 (before spinning) in control group of animals. In testis, Na+K+-, Ca2+-, and Mg2+-ATPase activities gradually increased from day 2 to day 12 during fifth larval age and level was maintained up to adult eclosion while, in ovary, a marked decline was noted up to day of adult emergence. Further, a significant and sharp rise was found in ATPase activity in silk gland tissue up to day 12 and afterwards a drastic fall was noted on day 15 (end of spinning) during fifth larval age.Administration of T4 to fifth stage larvae (1 hr old) at doses 0.5–2.0 μg/g significantly elevated the Na+K+-, Ca2+-, and Mg2+-ATPase activities in larval and pupal gonads in a dose-dependent fashion. But, in moths, the enhancement was very much confined to Na+K+- and Ca2+-ATPase in testes and only Ca2+-ATPase in ovaries. Again, in silk glands thyroxine (0.5–2.0 μg/g) caused a significant rise in the all ion-dependent ATPase activities only during the fifth larval stage. Interestingly, higher doses of T4 (4.0 μg/g) caused a significant reduction in Na+K+-, Ca2+- and Mg2+-ATPase in all the tissues almost all the days studied so far. However, lower doses of T4 (0.1 and 0.25 μg/g) remained ineffective in altering the different ion-specific ATPase activities. This study suggests, that mammalian thyroxine has a metabolic influence showing biphasic nature of action in tasar silkworm ATPase system.  相似文献   

18.
Muscarinic acetylcholine receptor (mAChR) III expressed in Xenopus oocytes, like mAChR I, mediates activation of a Ca2+-dependent Cl current, whereas mAChR IV, like mAChR II, principally induces activation of Na+ and K+ currents in a Ca2+-independent manner. mAChR III has a sensitivity to agonist of about one order of magnitude higher than that of mAChR I in mediating the Ca2+-dependent current response in Xenopus oocytes and in stimulating phosphoinositide hydrolysis in NG108-15 neuroblastoma-glioma hybrid cells. The agonist-binding affinity of mAChR III is also about one order of magnitude higher than that of mAChR I.  相似文献   

19.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

20.
The monoclonal antibody to the β-subunit of H+/K+-ATPase (mAbHKβ) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca2+-ATPase. We partially purified a mAbHKβ-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca2+-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca2+-ATPase. Synthesis of functional SR Ca2+-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca2+-ATPase synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号