首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

2.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

3.
Serine protease activation of near-silent epithelial Na+ channels   总被引:4,自引:0,他引:4  
The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels.  相似文献   

4.
Tetrodotoxin (TTX)-sensitive Na currents were examined in single dissociated ventricular myocytes from neonatal rats. Single channel and whole cell currents were measured using the patch-clamp method. The channel density was calculated as 2/micron 2, which agreed with our usual finding of four channels per membrane patch. At 20 degrees C, the single channel conductance was 20 pS. The open time distributions were fit by a single-exponential function with a mean open time of approximately 1.0 ms at membrane potentials from -60 to -40 mV. Averaged single channel and whole cell currents were similar when scaled and showed both fast and slow rates of inactivation. The inactivation and activation gating shifted quickly to hyperpolarized potentials for channels in cell-attached as well as excised patches, whereas a much slower shift occurred in whole cells. Slowly inactivating currents were present in both whole cell and single channel current measurements at potentials as positive as -40 mV. In whole cell measurements, the potential range could be extended, and slow inactivation was present at potentials as positive as -10 mV. The curves relating steady state activation and inactivation to membrane potential had very little overlap, and slow inactivation occurred at potentials that were positive to the overlap. Slow inactivation is in this way distinguishable from the overlap or window current, and the slowly inactivating current may contribute to the plateau of the rat cardiac action potential. On rare occasions, a second set of Na channels having a smaller unit conductance and briefer duration was observed. However, a separate set of threshold channels, as described by Gilly and Armstrong (1984. Nature [Lond.]. 309:448), was not found. For the commonly observed Na channels, the number of openings in some samples far exceeded the number of channels per patch and the latencies to first opening or waiting times were not sufficiently dispersed to account for the slowly inactivating currents: the slow inactivation was produced by channel reopening. A general model was developed to predict the number of openings in each sample. Models in which the number of openings per sample was due to a dispersion of waiting times combined with a rapid transition from an open to an absorbing inactivated state were unsatisfactory and a model that was more consistent with the results was identified.  相似文献   

5.
We report here the first evidence in intact epithelial cells of unit conductance events from amiloride-sensitive Na+ channels. The events were observed when patch-clamp recordings were made from the apical surface of cultured epithelial kidney cells (A6). Two types of channels were observed: one with a high selectivity to Na+ and one with relatively low selectivity. The characteristics of the low-selectivity channel are as follows: single-channel conductance ranged between 7 and 10 pS (mean = 8.4 +/- 1.3), the current-voltage (I-V) relationship displayed little if any nonlinearity over a range of +/- 80 mV (with respect to the patch pipette) and the channel Na+/K+ selectivity was approximately 3-4:1. Amiloride, a cationic blocker of the channel, reduced channel mean open time and increased channel mean closed times as the voltage of the cell interior was made more negative. Amiloride induced channel flickering at increased negative potentials (intracellular potential with respect to the patch) but did not alter the single-channel conductance or the I-V relationship from that observed in control patches. The characteristics of the high-selectivity channel are: a single-channel conductance of 1-3 pS (mean = 2.8 +/- 1.2), the current-voltage relationship is markedly nonlinear with a Na+/K+ selectivity greater than 20:1. The mean open and closed times for the two types of channels are quite different, the high-selectivity channel being open only about 10% of the time while the low-selectivity channel is open about 30% of the time.  相似文献   

6.
Nonselective cation channels were found in single channel recordings from cell-attached patches on human T lymphocytes. These channels were active under conditions that should lead to cell swelling (hypotonic bath solutions with NaCl or KCl); however, a definite dependence of activity on cell swelling has not been proven. Under these conditions similar channels were found in 20 of 23 patches from 11 different blood donors. The current-voltage relation was approximately linear for outward current (11-14 pS) and inwardly rectifying (to 23 pS) when the intact cells were depolarized with high KCl in the bath. The voltage dependence of channel activity is consistent with closing at hyperpolarized membrane potentials (Vm less than or equal to -50 mV) and block of open channels at strongly depolarized membrane potentials (Vm greater than 0 mV). Reversal potentials under all ionic gradients tested are consistent with a channel that is poorly selective between Na+ and K+ ions. Active channels in cell-attached patches were rapidly blocked by bath addition of the membrane-permeant inhibitor quinine. Channels that were active in cell-attached became quiescent after patch excision; however, two patches remained active long enough to obtain current-voltage relations. These were linear with a slope conductance for outward current of 8-11 pS. Because of the clustering of single-channel openings, detailed voltage dependence of kinetics and probability of opening were not studied.  相似文献   

7.
Single Na channel currents were compared in ventricular myocytes and cortical neurons of neonatal rats using the gigaseal patch-clamp method to determine whether tissue-specific differences in gating can be detected at the single-channel level. Single-channel currents were recorded in cell-attached and excised membrane patches at test potentials of -70 to -20 mV and at 9-11 degrees C. In both cell-attached and excised patches brain Na channel mean open time progressively increased from less than 1 ms at -70 mV to approximately 2 ms at -20 mV. Near threshold, single openings with dispersed latencies were observed. By contrast, in cell-attached patches, heart Na channel mean open time peaked near -50 mV, was three times brain Na channel mean open time, and declined continuously to approximately 2 ms at -20 mV. Near threshold, openings occurred frequently usually as brief bursts lasting several milliseconds and rarely as prolonged bursts lasting tens of milliseconds. Unlike what occurs in brain tissue where excision did not change gating, in excised heart patches both the frequency of prolonged bursting and the mean open time of single units increased markedly. Brain and cardiac Na channels can therefore be distinguished on the basis of their mean open times and bursting characteristics.  相似文献   

8.
Currents were obtained from single sodium channels in outside-out excised patches of membrane from the cell line GH3. The currents were examined in control patches and in patches treated with N- bromoacetamide ( NBA ) to remove inactivation. The single-channel current-voltage relationship was linear over the range -60 to + 10 mV, and was unaffected by NBA . The slope conductance at 9.3 degrees C was 12 pS, and the Q10 for single channel currents was about 1.35. The currents in both control and NBA -treated patches showed evidence of a slow process similar to desensitization in acetylcholine-receptor channels. This process was especially apparent at rapid rates of stimulation (5 Hz), where openings occurred in clusters of records. The clustering of records with and without openings was analyzed by runs analysis, which showed a statistically significant trend toward nonrandom ordering in the responses of channels to voltage pulses. NBA made this nonrandom pattern more apparent. The probability that an individual channel was "hibernating" during an activating depolarization was estimated by a maximum likelihood method. The lifetime of the open state was also estimated by a maximum likelihood method, and was examined as a function of voltage. In control patches the open time was mildly voltage-dependent, showing a maximum at about -50 mV. In NBA -treated patches the open time was greater than in the control case and increased monotonically with depolarization; it asymptotically approached that of the control patches at hyperpolarized potentials. By comparing channel open times in control and NBA -treated patches, we determined beta A and beta I, the rate constants for closing activation gates and fast inactivation gates. Beta I was an exponential function of voltage, increasing e-fold for 34 mV. beta A had the opposite voltage dependence. The probability of an open channel closing its fast inactivation gate, rather than its activation gate, increased linearly with depolarization from -60 to -10 mV. These results indicate that inactivation is inherently voltage dependent.  相似文献   

9.
In the plasma membranes of mammalian proximal renal tubules single ion channels were investigated mainly in isolated tubules perfused on one side, in isolated nonperfused (collapsed) tubules and in primary cell cultures. With these techniques, the following results were obtained: in the luminal membrane of isolated one-sided perfused tubules of rabbit and mouse S3 segments, K(+)-selective channels with single-channel conductance (g) of 33 pS and 63 pS, respectively, were recorded. In primary cultures of rabbit S1 segments, a small-conductance (42 pS) as well as a large-conductance (200 pS) K+ channel were observed. The latter was Ca2(+)- and voltage-sensitive. In cultured cells a Ca2(+)-activated, nonselective cation channel with g = 25 pS was also recorded. On the other hand, an amiloride-sensitive channel with g = 12 pS, which was highly selective for Na+ over K+, was observed in the isolated perfused S3 segment. In the basolateral membrane of isolated perfused S3 segments, two types of K+ channels with g = 46 pS and 36 pS, respectively, were observed. The latter channel was not dependent on cytosolic Ca2+ in cell-excised patches. A K+ channel with g = 54 pS was recorded in isolated nonperfused S1 segments. This channel showed inward rectification and was more active at depolarizing potentials. In isolated perfused S3 segments, in addition to the K+ channels also a nonselective cation channel with g = 28 pS was observed. This channel was highly dependent on cytosolic Ca2+ in cell-free patches. It can be concluded that the K+ channels both in the luminal and contraluminal cell membrane are involved in the generation of the cell potential. Na+ channels in the luminal membrane may participate in Na+ reabsorption, whereas the function of a basolateral cation channel remains unclear. Recently, single anion-selective channels were recorded in membranes of endocytotic vesicles, isolated from rat proximal tubules. Vesicles were enlarged by the dehydration/rehydration method and investigated with the patch clamp technique. The Cl- channel had a conductance of 73 pS, the current-voltage curve was linear and the channel inactivated at high negative clamp potentials. It is suggested that this channel is responsible for charge neutrality during active H+ uptake into the endosomes.  相似文献   

10.
In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.  相似文献   

11.
S Y Chang  J Satin    H A Fozzard 《Biophysical journal》1996,70(6):2581-2592
The adult rat skeletal muscle Na+ channel alpha-subunit (mu 1) appears to gate modally with two kinetic schemes when the channel is expressed in Xenopus oocytes. In the fast mode mu 1 single channels open only once or twice per depolarizing pulse, but in the slow mode the channels demonstrate bursting behavior. Slow-mode gating was favored by hyperpolarized holding potentials and slow depolarizing rates, whereas fast-mode gating was favored by depolarized holding potentials and rapid depolarizations. Single-channel studies showed that coexpression of beta 1 reduces slow-mode gating, so that channels gate almost exclusively in the fast mode. Analysis of open-time histograms showed that mu 1 and mu 1 + beta 1 both have two open-time populations with the same mean open times (MOTs). The difference lies in the relative sizes of the long and short MOT components. When beta 1 was coexpressed with mu 1 in oocytes, the long MOT fraction was greatly reduced. It appears that although mu 1 and mu 1 + beta 1 share the same two open states, the beta 1-subunit favors the mode with the shorter open state. Examination of first latencies showed that it is likely that the rate of activation is increased upon coexpression with beta 1. Experiments also showed that the rate of activation for the fast mode of mu 1 is identical to that for mu 1 + beta 1 and is thus more rapid than the rate of activation for the slow mode. It can be concluded that beta 1 restores native-like kinetics in mu 1 by favoring the fast-gating mode.  相似文献   

12.
Polarized renal epithelial cells have pertussis toxin-sensitive Gi proteins at their apical membrane capable of modulating Na+ channel activity (Cantiello, H.F., Patenaude, C.R., and Ausiello, D.A. (1989) J. Biol. Chem. 264, 20867-20870). In this study, the patch clamp technique was used to assess if this Gi-mediated regulation of Na+ channels is a component of a phospholipid signal transduction pathway. In excised inside-out patches of apical membranes of A6 cells, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated Na+ channel activity (percent open time and channel number) was inhibited by the phospholipase inhibitor mepacrine (50 microM), which had no effect on single channel conductance. In contrast, Na+ channel activity increased in a Ca2(+)-dependent manner following the addition of 100 nM mellitin to untreated or pertussis toxin-treated patches. Addition of 10 microM arachidonic acid in the presence of mepacrine increased Na+ channel activity. Both percent open time and Na+ channel number induced by GTP gamma S, the exogenous alpha i-3 subunit, or arachidonic acid were inhibited by the addition of the 5-lipoxygenase inhibitor nordihydroguaiaretic acid. Na+ channel activity was restored with the addition of leukotriene D4 (100 nM) or the parental leukotriene substrate 5-hydroperoxyeicosatetraenoic acid (10 microM). Thus, Gi activation of apical membrane epithelial Na+ channels is mediated through the regulation of phospholipase and lipoxygenase activities. This apically located signal transduction pathway may be sensitive to, or independent of, classical second messengers generated at the basolateral membrane and known to be responsible for modulation of Na+ channel activity in epithelia.  相似文献   

13.
The currents through single Na+ channels were recorded from dissociated cells of the flexor digitorum brevis muscle of the mouse. At 15 degrees C the prolonged bursts of Na+ channel openings produced by application of the drug DPI 201-106 had brief sojourns to subconductance levels. The subconductance events were relatively rare and brief, but could be identified using a new technique that sorts amplitude estimates based on their variance. The resulting "levels histogram" had a resolution of the conductance levels during channel activity that was superior to that of standard amplitude histograms. Cooling the preparation to 0 degrees C prolonged the subconductance events, and permitted further quantitative analysis of their amplitudes, as well as clear observations of single-channel subconductance events from untreated Na+ channels. In all cases the results were similar: a subconductance level, with an amplitude of roughly 35% of the fully open conductance and similar reversal potential, was present in both drug-treated and normal Na+ channels. Drug-treated channels spent approximately 3-6% of their total open time in the subconductance state over a range of potentials that caused the open probability to vary between 0.1 and 0.9. The summed levels histograms from many channels had a distinctive form, with broader, asymmetrical open and substate distributions compared with those of the closed state. Individual subconductance events to levels other than the most common 35% were also observed. I conclude that subconductance events are a normal subset of the open state of Na+ channels, whether or not they are drug treated. The subconductance events may represent a conformational alteration of the channel that occurs when it conducts ions.  相似文献   

14.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

15.
Endothelial cells from brain microvessels form the blood-brain barrier. Brain microvessels and endothelial cells isolated from rat brain microvessels express an amiloride-sensitive cationic channel that was characterized using [3H]phenamil binding and patch-clamp experiments. [3H]Phenamil, a labeled amiloride analog, recognizes a single family of binding sites with a dissociation constant of 20-30 nM and a maximum binding capacity of 8-15 pmol/mg protein. The pharmacological profile of the channel (phenamil greater than benzamil greater than amiloride) is very similar to that of the epithelium Na+ channel of mammalian kidney and of frog epithelia. Long-lasting currents were observed in patch-clamp experiments using excised outside-out patches. Application of amiloride or phenamil first produced a rapid flickering of channel activity and then its complete blockade. The mean unit channel conductance at 140 mM Na+ was 23 picosiemens. The selectivity of Na+ over K+ was estimated from reversal potentials to be 1.5:1. Properties of the channel in microvessels are clearly distinct from those of the Na+ channel of the kidney, suggesting the existence of several isoforms of cationic channels that are sensitive to amiloride and its derivatives. The low selectivity cationic channel of endothelial cells in brain microvessels might be important for controlling both Na+ and K+ movements across the blood-brain barrier.  相似文献   

16.
In nonpolar excitable cells, guanine nucleotide regulatory (G) proteins have been shown to modulate ion channel activity in response to hormone receptor activation. In polarized epithelia, hormone receptor-G protein coupling involved in the generation of cAMP occurs on the basolateral membrane, while the physiological response to this messenger is a stimulation of ion channel activity at the apical membrane. In the present study we have utilized the patch-clamp technique to assess if the polarized renal epithelia, A6, have topologically distinct G proteins at their apical membrane capable of modulating Na+ channel activity. In excised inside-out patches of apical membranes, spontaneous Na+ channel activity (conductance 8-9 picosiemens) was inhibited by the addition of 0.1 mM guanosine 5'-O-(2-thio)diphosphate to the cytosolic membrane surface without an effect on single channel conductance. In contrast, the percent open time of spontaneous Na+ channels increased from 6 to 50% following the addition of 0.1 mM GTP. The addition of preactivated pertussis toxin (100 ng/ml) to the cytosolic bathing solution of the excised patch inhibited spontaneous Na+ channel activity within a minute by 85% from approximately 47 to 7% open time and reduced the percent open time for Na+ channel activity to zero after approximately 3 min. The addition of 0.1 mM guanosine 5'-(3-O-thio)triphosphate or the addition of 20 pM purified human alpha i-3 subunit to pertussis toxin-treated membrane patches restored Na+ channel activity from zero to 35% open time. As little as 0.2 pM alpha i-3 subunit was capable of restoring Na+ channel activity. These data provide evidence for a role of pertussis toxin-sensitive G proteins in the apical plasma membrane of renal epithelia distal to signal transduction pathways in the basolateral membrane of these cells. This raises the possibility of a topologically distinct signal transducing pathway co-localized with the Na+ channel.  相似文献   

17.
Application of Ca2+ to the inner surface of red-cell membranes activates unitary currents that can be measured in cell-attached and cell-free membrane patches. Ca2+ can be replaced by Pb2+ to activate the single channels. In addition to internal Ca2+ external K+ has to be present. The channels are preferentially permeable to K+ with a selectivity ratio PK:PNa of about 15:1 as estimated from measurement of reversal potentials. The dependence of channel activity on Ca2+ is compatible with the conception that the binding of two Ca2+ is necessary to open a single channel. Both the channel activity and the single-channel conductance exhibit inward rectification. External and internal Na+ inhibit the K+ currents. The reported results suggest that the unitary current events are responsible for the Ca2+-dependent K+ permeability known from measurement on cell suspensions. Therefore, comparison of the two techniques allows calculation of the number of K+ channels per red cell, which on average is about 10.  相似文献   

18.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

19.
Single channel properties of P2X2 purinoceptors   总被引:6,自引:0,他引:6       下载免费PDF全文
The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current-voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of approximately 30 pS at -100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was approximately 150 mM at 0 mV and voltage dependent. The binding site appeared to be approximately 0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 microM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of approximately 7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose-response curve.  相似文献   

20.
Single cardiac Na+ channels were investigated after intracellular proteolysis to remove the fast inactivation process in an attempt to elucidate the mechanisms of channel gating and the role of slow inactivation. Na+ channels were studied in inside-out patches excised from guinea-pig ventricular myocytes both before and after very brief exposure (2-4 min) to the endopeptidase, alpha-chymotrypsin. Enzyme exposure times were chosen to maximize removal of fast inactivation and to minimize potential nonspecific damage to the channel. After proteolysis, the single channel current-voltage relationship was approximately linear with a slope conductance of 18 +/- 2.5 pS. Na+ channel reversal potentials measured before and after proteolysis by alpha-chymotrypsin were not changed. The unitary current amplitude was not altered after channel modification suggesting little or no effect on channel conductance. Channel open times were increased after removal of fast inactivation and were voltage-dependent, ranging between 0.7 (-70 mV) and 3.2 (-10 mV) ms. Open times increased with membrane potential reaching a maximum at -10 mV; at more positive membrane potentials, open times decreased again. Fast inactivation appeared to be completely removed by alpha-chymotrypsin and slow inactivation became more apparent suggesting that fast and slow inactivation normally compete, and that fast inactivation dominates in unmodified channels. This finding is not consistent with a slow inactivated state that can only be entered through the fast inactivated state, since removal of fast inactivation does not eliminate slow inactivation. The data indicate that cardiac Na+ channels can enter the slow inactivated state by a pathway that bypasses the fast inactivated state and that the likelihood of entering the slow inactivated state increases after removal of fast inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号