首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Chemical alarm cues released from injured tissue are not released under any other context and therefore reliably inform nearby prey of the presence of a predator. Laboratory and field studies have demonstrated that most aquatic taxa show antipredator responses to chemical alarm cues. Ostariophysan fish (e.g. minnows) possess specialized skin cells that contain an alarm chemical. Magurran et al. (1996, Proceedings of the Royal Society of London, Series B,263, 1551-1556) were the first to use underwater video to carefully document the behavioural response of free-ranging wild populations of minnows to minnow alarm cues. They found no evidence of an antipredator response, and challenged the assumption that the contents of these cells indicate risk in the field. They proposed that alarm responses are context dependent in that they are an artefact of enclosed environments such as laboratory aquaria and field traps. Here, we repeat their experiment on free-swimming field populations of littoral fish and report a significant decrease in the number of fish in areas where chemical alarm cues of blacknose shiners, Notropis heterolepis (Ostariophysi: Cyprinidae) were released. The effect of these chemical cues was equal in magnitude to the effect of the presentation of a model predator. The response to the approach of a model predator (visual cue) was intensified by pre-exposure to chemical alarm cues. We corroborated this interaction between chemical and visual indicators of predation risk in a laboratory study using glowlight tetras, Hemigrammus erythrozonus (Ostariophysi: Characidae). Response to the visual stimulus of a predator was significantly intensified by previous exposure to conspecific chemical alarm cues. We conclude that ostariophysan skin indeed contains an alarm cue that (1) informs nearby prey of imminent predation risk, (2) induces some form of antipredator behaviour in most contexts, and (3) affects subsequent behavioural responses to stimuli in other sensory modalities.  相似文献   

2.
Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star goby, Asterropteryx semipunctatus. Visual and chemical cue intensities were used that were indicative of a high threat situation. The behavioural response elicited by both the visual cues of a predator (the rock cod, Cephalopholis boenak) and the chemical alarm cues from conspecifics were similar in magnitude, with responses including a decrease in feeding strikes and moves. A bobbing behaviour was exhibited when the predator was visible and not when only exposed to the chemical alarm cue. When visual and chemical cues were presented together they yielded a stronger antipredator response than when gobies were exposed solely to conspecific alarm cues. This suggests additivity of risk assessment information at the levels of threat used, however, the goby’s response is also likely to depend on the environmental and social context of the predator–prey encounter. This study highlights the importance of chemical cues in the assessment of predation risk for a coral reef fish.  相似文献   

3.
Recent evidence suggests that predator inspection behaviour by Ostariophysan prey fishes is regulated by both the chemical and visual cues of potential predators. In laboratory trials, we assessed the relative importance of chemical and visual information during inspection visits by varying both ambient light (visual cues) and predator odour (chemical cues) in a 2 × 2 experimental design. Shoals of glowlight tetras (Hemigrammus erythrozonus) were exposed to a live convict cichlid (Archocentrus nigrofasciatus) predator under low (3 lux) or high (50 lux) light levels and in the presence of the odour of a cichild fed tetras (with an alarm cue) or swordtails (Xiphophorus helleri, with an alarm cue not recognized by tetras). Tetras exhibited threat‐sensitive inspection behaviour (increased latency to inspect, reduced frequency of inspection, smaller inspecting group sizes and increased minimum approach distance) towards a predator paired with a tetra‐fed diet cue, regardless of light levels. Similar threat‐sensitive inspection patterns were observed towards cichlids paired with a swordtail‐fed diet cue only under high light conditions. Our data suggest that chemical cues in the form of prey alarm cues in the diet of the predator, are the primary source of information regarding local predation risk during inspection behaviour, and that visual cues are used when chemical information is unavailable or ambiguous.  相似文献   

4.
Predation is an important but often fluctuating selection factor for prey animals. Accordingly, individuals plastically adopt antipredator strategies in response to current predation risk. Recently, it was proposed that predation risk also plastically induces neophobia (an antipredator response towards novel cues). Previous studies, however, do not allow a differentiation between general neophobia and sensory channel-specific neophobic responses. Therefore, we tested the neophobia hypothesis focusing on adjustment in shoaling behavior in response to a novel cue addressing a different sensory channel than the one from which predation risk was initially perceived. From hatching onwards, juveniles of the cichlid Pelvicachromis taeniatus were exposed to different chemical cues in a split-clutch design: conspecific alarm cues which signal predation risk and heterospecific alarm cues or distilled water as controls. At 2 months of age, their shoaling behavior was examined prior and subsequent to a tactical disturbance cue. We found that fish previously exposed to predation risk formed more compact shoals relative to the control groups in response to the novel disturbance cue. Moreover, the relationship between shoal density and shoal homogeneity was also affected by experienced predation risk. Our findings indicate predator-induced, increased cross-sensory sensitivity towards novel cues making neophobia an effective antipredator mechanism.  相似文献   

5.
Carbon dioxide (CO2) levels in the atmosphere and surface ocean are rising at an unprecedented rate due to sustained and accelerating anthropogenic CO2 emissions. Previous studies have documented that exposure to elevated CO2 causes impaired antipredator behavior by coral reef fish in response to chemical cues associated with predation. However, whether ocean acidification will impair visual recognition of common predators is currently unknown. This study examined whether sensory compensation in the presence of multiple sensory cues could reduce the impacts of ocean acidification on antipredator responses. When exposed to seawater enriched with levels of CO2 predicted for the end of this century (880 μatm CO2), prey fish completely lost their response to conspecific alarm cues. While the visual response to a predator was also affected by high CO2, it was not entirely lost. Fish exposed to elevated CO2, spent less time in shelter than current‐day controls and did not exhibit antipredator signaling behavior (bobbing) when multiple predator cues were present. They did, however, reduce feeding rate and activity levels to the same level as controls. The results suggest that the response of fish to visual cues may partially compensate for the lack of response to chemical cues. Fish subjected to elevated CO2 levels, and exposed to chemical and visual predation cues simultaneously, responded with the same intensity as controls exposed to visual cues alone. However, these responses were still less than control fish simultaneously exposed to chemical and visual predation cues. Consequently, visual cues improve antipredator behavior of CO2 exposed fish, but do not fully compensate for the loss of response to chemical cues. The reduced ability to correctly respond to a predator will have ramifications for survival in encounters with predators in the field, which could have repercussions for population replenishment in acidified oceans.  相似文献   

6.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

7.
Individuals that dare approach predators (predator inspection behaviour) may benefit by acquiring information regarding the potential threat of predation. Although information acquisition based on visual cues has been demonstrated for fish, it is unknown whether fish will inspect predators on the basis of chemical cues or whether such inspection behaviour results in information acquisition. Here, we first ascertained whether predator inspection behaviour can be mediated by chemical cues from predators by exposing groups of predator-naive glowlight tetras (Hemigrammus erythrozonus) to the chemical cues of a potential fish predator (convict cichlid Cichlasoma nigrofasciatum) that had been fed either tetras (which possess an alarm pheromone) or swordtails (Xiphophorus helleri, which lack Ostariophysan alarm pheromones). Tetras showed a significant increase in antipredator behaviour when exposed to the tetra-diet cue, but not when exposed to the swordtail-diet cue. Chemically mediated predator inspection behaviour was also affected. Both the latency to inspect and the minimum approach distance to the predator significantly increased, and the mean number of inspectors per predator inspection visit significantly decreased when tetras were exposed to the tetra-diet versus the swordtail-diet chemical cues. We then examined a potential benefit associated with chemically mediated predator inspection behaviour. Only tetras that were initially exposed to the tetra-diet cue and that had inspected the predator acquired the visual recognition of a convict cichlid as a predation threat. Our results thus demonstrate that (1) predator inspection behaviour in the glowlight tetra can be initiated by chemical cues, (2) chemically mediated inspection behaviour is affected by the presence of alarm pheromone, and (3) inspectors benefit by acquiring the recognition of novel predators. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

8.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

9.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

10.
A wide diversity of aquatic organisms release chemical alarm cues upon encountering or being attacked by a predator. These alarm cues can be used by nearby individuals to assess local predation risk. Receivers warned by chemical alarm cues gain a survival benefit when encountering predators. Animals that are in the same prey guild (i.e. that co‐occur and share the same predators) may learn to recognize each others’ chemical alarm cues. This ability may confer an adaptive advantage if the prey animals are vulnerable to the same predators. However, if the prey grow to different sizes and as a consequence are no longer vulnerable to the same suite of predators, then there should no longer be an advantage for the prey to respond to each others’ alarm cues. In this study, we exposed small and large fathead minnows (Pimephales promelas) to cues from syntopic injured damselfly larvae (Enallagma boreale), cues from injured mealworm larvae (Tenebrio molitor) and to distilled water. Small minnows exhibited antipredatory behaviour and increased shelter use in response to injured damselfly cues but not to the controls of injured mealworm or distilled water. On the contrary, large minnows exhibited no significant change in shelter use in response to any of the injured cues. These data demonstrate that fathead minnows exhibit an antipredator response to damselfly alarm cues, but only when minnows are small and members of the same prey guild as damselfly larvae. These results demonstrate the considerable flexibility in the responses to heterospecific alarm cues.  相似文献   

11.
In four experiments conducted over a 6-year period, we investigated whether fathead minnows, Pimephales promelas, could acquire the ability to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. A laboratory experiment documented that stickleback-naïve minnows did not exhibit an anti-predator response when exposed to the chemical alarm cues of stickleback. In a laboratory experiment conducted 5 years after the introduction of stickleback to the pond, minnows exhibited an antipredator response to stickleback cues. Moreover, in a field experiment the minnows exhibited avoidance of areas labelled with stickleback alarm cues. Minnows raised from eggs taken from the test pond did not exhibit an anti-predator response to stickleback cues while minnows from the test pond that had experience with stickleback cues did respond to stickleback cues. Our results provide clear evidence that cross-species responses to chemical alarm cues of fishes can be learned. Learned recognition of alarm cues has important implications for predator/prey interactions.  相似文献   

12.
A wide range of aquatic taxa use environmental chemical cues for the assessment of predation risk. We examined whether Gammarus minus (Crustacea: Amphipoda) exhibit antipredator behavior in response to injury-released chemicals from conspecifics or heterospecifics (Crustacea: Isopoda). We then examined whether behavioral responses to these cues conferred survival benefits to the amphipods. In the first part of this study, we tested the behavioral response of G. minus to the following treatments: 1. water containing injury-released cues of conspecifics; 2. water containing injury-released cues of a sympatric isopod crustacean, Lirceus fontinalis; or 3. water containing no cues (control). Relative to the control, Gammarus responded to the conspecific cue by moving to the substratum and decreasing activity. In contrast, Gammarus responded to the heterospecific cue by moving up into the water column and increasing activity. In the second part of this study, we tested if the behavioral response to these cues confers a survival benefit to Gammarus when exposed to a predator. A green sunfish ( Lepomis cyanellus ) was retained behind a partition in the test tanks. Two minutes after the introduction of the chemical cues in the first test, the barrier was lifted and predation events recorded. Relative to the control, the time to the first attack increased for Gammarus exposed to conspecific cues and decreased for those exposed to heterospecific cues. These data indicate that Gammarus distinguish between chemical cues from conspecific and heterospecific crustaceans, and that the antipredator response to conspecific cues confers a fitness benefit (i.e. increased survival due to increased time to the first attack).  相似文献   

13.
The use of chemical information in assessment of predation risk is pervasive across animal taxa. However, by its very nature, chemical information can be temporally unreliable. Chemical cues persist for some period of time after they are released into the environment. Yet, we know surprisingly little about the rate of degradation of chemical cues under natural conditions and hence little about how they function in temporal risk assessment under natural conditions. Here, we conducted an experiment to identify a concentration of fresh alarm cues that evoke a strong antipredator response in coral reef damselfish, Pomacentrus ambonensis. We then tested the rate at which these alarm cues degraded under natural conditions in ocean water, paying attention to whether the rate of degradation varied throughout the day and whether the temporal pattern correlated with physicochemical factors that could influence the rate of degradation. Fresh alarm cues released into ocean water evoke strong avoidance responses in juvenile fish, while those aged for 30 min no longer evoke antipredator responses. Fish exposed to cues aged for 10 or 20 min show intermediate avoidance responses. We found a marked temporal pattern of response throughout the day, with much faster degradation in early to mid‐afternoon, the time of day when solar radiation, temperature, dissolved oxygen, and pH are nearing their peak. Ecologists have spent considerable effort elucidating the role of chemical information in mediating predator–prey interactions, yet we know almost nothing about the temporal dynamics of risk assessment using chemical information. We are in dire need of additional comparative field experiments on the rate of breakdown of chemical cues, particularly given that global change in UV radiation, temperature, and water chemistry could be altering the rates of degradation and the potential use of this information in risk assessment.  相似文献   

14.
Predation imposes selection on the ability of prey to recognize and respond to potential threats. Many prey species detect predators via chemoreception, particularly in aquatic environments. Also, chemical cues from injured prey are often perceived as an indication of predation risk. However, because antipredatory behavior can be costly, prey responses should depend on the current level of risk that each predator poses, which may depend on the type of chemical cues detected. We exposed larval newts, Triturus pygmaeus, to chemical cues from predator larval beetles or to alarm cues from conspecific larval newts and examined the behavioral changes of larval newts. Results showed that larval newts reduced activity levels when conspecific alarm cues were present but not when the predator cues alone were present. These results might suggest that larval newts are unable to recognize predator chemicals. To avoid costs of unnecessary antipredatory behaviors, larval newts may benefit by avoiding only predators that represent a current high level of threat, showing only antipredatory responses when they detect conspecific alarm cues indicating that an actual predatory attack has occurred.  相似文献   

15.
Under natural conditions, both young-of-the-year (YOY; 0+ year) and parr (1+ year) Atlantic salmon Salmo salar exhibited strong antipredator behaviour ( e.g. increase in latency to resume foraging) following the exposure to damage-released chemical alarm cues relative to a stream water control. Subsequent exposure to a novel visual stimulus had contrasting results. Parr increased their reactive distance to the visual stimulus if they had been previously exposed to a chemical alarm cue, whereas YOY did not. On the other hand, both YOY and parr took significantly longer to resume foraging when exposed to a visual stimulus if they had been previously exposed to a chemical alarm cue than control groups. While YOY and parr differed in the type and intensity of antipredator responses to both chemical and visual stimuli, perhaps due to differential costs and benefits associated with age, both used the chemical and the visual information in a combined manner.  相似文献   

16.
17.
Animals can attempt to reduce uncertainty about their environment by gathering information personally or by observing others' interactions with the environment. There are several sensory modalities that can be used to transmit social information from chemical to visual to audible cues. When predation risk is variable, visual cues of conspecific behavior might be especially telling about the presence of a potential threat; however, most studies couple visual and chemical cues together. Here, we tested whether visual behavioral cues from frightened conspecifics were sufficient to indirectly transfer information about the presence of an unseen predator in three‐spined sticklebacks. Our results demonstrate that visual behavioral cues from conspecifics about the presence of a predator are sufficient to induce an antipredator response. This suggests that information transfer can occur rapidly in the absence of chemical cues and that some individuals weigh social information more heavily than others.  相似文献   

18.
Under neutral (pH 7·0) conditions, juvenile pumpkinseed Lepomis gibbosus exhibited significant antipredator responses, of similar intensities, to the chemical alarm cues of conspecifics, an allopatric congener the green sunfish Lepomis cyanellus and the artificial alarm cue of a sympatric prey guild member (Cyprinidae, hypoxanthine-3- N -oxide). Under weakly acidic conditions (pH 6·0), however, no increase in antipredator behaviour was seen in response to hypoxanthine-3- N -oxide and a quantitatively weaker response was found in response to conspecific and congener cues, suggesting that the use of chemical alarm cues by some prey fishes may be impaired by acid precipitation.  相似文献   

19.
Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.  相似文献   

20.
Predation is a strong selective force acting on prey animals. Predation is by nature highly variable in time; however, this aspect of predation risk has traditionally been overlooked by behavioural ecologists. Lima and Bednekoff proposed the predation risk allocation hypothesis (RAH), predicting how temporal variation in predation risk drives prey antipredator behaviours. This model is based on the concept that prey adaptively allocate their foraging and antipredator efforts across high‐ and low‐risk situations, depending on the duration of high‐ vs. low‐risk situations and the relative risk associated with each of them. An unstudied extension of the RAH is the effect of predictability of predation risk. A predictable risk should lead to prey displaying minimal vigilance behaviours during predictable low‐risk periods and the strongest antipredator behaviours during risky periods. Conversely, an unpredictable predation risk should result in prey displaying constant vigilance behaviour, with suboptimal foraging rates during periods of safety but antipredator behaviours of lower intensity during periods of risk. We tested this extension of the RAH using convict cichlids exposed to high‐risk alarm cues at two frequencies of risk (1× vs. 3×) per day, on either a fixed or random schedule for 5 d. We then tested the fish for a response to high‐risk cues (alarm cues) and to low‐risk cues (disturbance resulting from the introduction of distilled water). Our study supports previous results on the effects of risk frequency and cue intensity on cichlid behaviour. We failed to show an effect of risk predictability on the behavioural responses of cichlids to high‐risk alarm cues, but predictability did influence responses to low‐risk cues. We encourage further studies to test the effect of predictability in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号