首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anchorage of deep rooted 16-year-old larch trees, Larixeuropea japonica, has been studied by combining winching testswith analyses of strain around the base of the trunk and rootsystem and mechanical tests on individual roots. These showedthat anchorage is provided by the laterals which emerge fromaround the stem base, sinker roots which emerge along theirlength, and tap roots positioned directly underneath the bole.During anchorage failure the leeward laterals are bent and eventuallybreak close to their base, whilst the windward laterals arepulled out of the ground, with their sinker roots intact. Afterinitially being confined by the soil and bending, the tap rootrotates in the soil. Anchorage failure is similar when the soilis dry as when it is wet, but failure occurs closer to the trunk.Strain measurements along the lateral roots revealed that thestresses were highest close to the trunk and that these regionsof the roots contribute most to tree stability. The two major components of anchorage were found to be the resistanceof leeward laterals to bending and the resistance of tap rootsand windward sinkers to uprooting. Bending tests on leewardlaterals revealed that they provide around 25% of tree anchorage.Almost 75% of the anchorage strength must, therefore, be providedby the windward sinkers and tap roots. Anchorage strength ofroots was positively correlated to their cross-sectional area.The vertical orientation of the sinkers makes the anchoragesystem of larch more efficient than the plate system formedby Sitka spruce on waterlogged soils and means that no root-soilplate is formed. Key words: Anchorage, root architecture, sinker roots, root bending strength, windthrow  相似文献   

2.
The root system of mature wheat Triticum aestivum Marts Doveis dominated by the 7 to 15 adventitious roots which emergefrom the perimeter of the stem base, pointing radially outwardsand downwards. The basal, coronal region of these roots is thickand unbranched, attached to a rhizosheath of earth by a densecovering of root hairs and stiffened in bending by lignificationof outer layers of the cortex. Root lodging of plants involves bending of the coronal rootsat their base and axial movement of leeward and windward rootsthrough the soil; their resistance to these motions providemoments resisting lodging. A model of anchorage was producedby summing the resistance of each root to both forms of motionto give two anchorage components. The model was tested in aseries of mechanical experiments in which simulated lodgingwas followed by loading of individual roots; results supportedthe anchorage model and suggested that in the experimental conditionsthe two components of anchorage were approximately equal inmagnitude. The stem was about 30% stronger than the anchoragesystem. The coronal anchorage roots made up 4.4% of total dry mass;it is suggested that anchorage could be improved either by increasinginvestment in this region or by altering root orientation. Sequentialdevelopment of seminal and adventitious root systems is relatedto the changes in anchorage requirement with age.  相似文献   

3.
The role played by lateral roots and root hairs in promoting plant anchorage, and specifically resistance to vertical uprooting forces has been determined experimentally. Two species were studied, Allium cepa (onion) which has a particularly simple root system and two mutants of Arabidopsis thaliana, one without root hairs (rhd 2-1) and another with reduced lateral root branching (axr 4-2). Maximum strength of individual onion roots within a plant increased with plant age. In uprooting tests on onion seedlings, resistance to uprooting could be resolved into a series of events associated with the breakage of individual roots. Peak pulling resistance was explained in a regression model by a combination of a measure of plant size and the extent to which the uprooting resistance of individual roots was additive. This additive effect is termed root co-operation. A simple model is presented to demonstrate the role played by root co-operation in uprooting resistance. In similar uprooting tests on Arabidopsis thaliana, the mutant axr 4-2, with very restricted lateral development, showed a 14% reduction in peak pulling resistance when compared with the wild-type plants of similar shoot dry weight. The uprooting force trace of axr 4-2 was different to that of the wild type, and the main axis was a more significant contributor to anchorage than in the wild type. By contrast, the root hair-deficient mutant rhd 2-1 showed no difference in peak pulling resistance compared with the wild type, suggesting that root hairs do not normally play a role in uprooting resistance. The results show that lateral roots play an important role in anchorage, and that co-operation between roots may be the most significant factor.  相似文献   

4.
The Anchorage of Leek Seedlings: The Effect of Root Length and Soil Strength   总被引:15,自引:1,他引:14  
ENNOS  A. ROLAND 《Annals of botany》1990,65(4):409-416
The mechanical behaviour of single roots being extracted fromsoil was modelled as a process in which tension is transferredfrom the upper regions of the root to the soil via shear. Quantitativepredictions were made about the extraction forces and the shapeof the uprooting curves, and these were tested using leek radiclesof different lengths in soil of two different strengths. Results of uprooting tests were qualitatively similar to thepredictions. The pullout resistance rose with root length, untilthe breaking strength of the root was reached, at around 30mm: longer roots all broke before the tip was stressed. In wholeroot systems, therefore, failure will occur proximally beforethe line distal roots are mechanically stressed, so these canhave no anchorage function. Resistance to an upward force will be most economically achievedby having many strengthened proximal root axes, as in the adventitiousroot systems of grasses, sedges and stoloniferous dicots. Allium porrum, root, anchorage, shear, tension, soil  相似文献   

5.
The anchorage of winter wheat, Triticum aestivum L., is providedby a cone of rigid coronal roots which emerge from around thestem base. During root lodging this cone rotates at its windwardedge below the soil surface, the soil inside the cone movingas a block and compressing the soil beneath. A theoretical modelof anchorage suggested that lodging resistance should be dependenton the diameter of the root-soil cone, coronal root bendingstrength and soil shear strength. We tested the predictions of the anchorage model by carryingout two series of experiments. In the first, varieties of contrastinglodging resistances were artificially lodged. The moment requiredto rotate plants into the soil, the diameter of the root-soilcone, and the bending strength of the coronal roots were recorded.The lodging moment was correlated with the size of the soilcone, as predicted. Generally, differences in anchorage strengthbetween varieties were due to differences in root-soil conediameter, although coronal root strength was also important. A second series of tests was carried out using model plantsanchored by plastic discs. The behaviour of the models duringartificial lodging supported the anchorage model; the forceresisting lodging was similar to that of plants with root-soilcones of the same size and the resisting force was dependenton the soil strength. These results suggest that root lodging resistance might beimproved by increasing both the angle of spread and the bendingstrength of the coronal roots. Key words: Anchorage, root-soil cone, coronal roots, lodging, wheat  相似文献   

6.
The Anchorage Mechanics of Maize, Zea mays   总被引:2,自引:0,他引:2  
The anchorage system of mature maize Zea mays was investigatedby combining morphological and anatomical study of the rootsystem with mechanical tests on roots and with studies in whichplants were pulled over. The root system is dominated by 20–30adventitious roots which emerge in rings from the stem basepointing radially downwards and outwards, approximately 30°from the vertical. Roots are strengthened near their base bya heavily lignified exodermis which makes them rigid in bending;distally, strength and rigidity both decrease because rootsbecome thinner and less lignified. When plants were pulled over,a maximum anchorage moment of 5–20 Nm was mobilized atangles of 8–10°, larger plants having stronger anchorage.Movement was initially centred on the leeward side of the stem,anchorage being due to the resistance of both windward and leewardroots to axial motion through the soil and to bending. At displacementsover 10°, however, leeward roots buckled under combinedbending and compression and the centre of rotation shifted tothe windward perimeter of the root system; subsequent movementof the cone of roots and soil was resisted only by the bearingstrength of the soil beneath it. The differences between anchorage failure in balsam and sunflowersand that in maize probably results from the lower angular spreadand the weakness in compression of the maize roots which preventsthe leeward side of the root system from bearing large downwardloads. The system behaves more like that of wheat; these resultssuggest that the lodging resistance of both plants may be improvedby increasing the bending strength and angle of spread of theadventitious roots. Key words: Zea mays, roots, anchorage  相似文献   

7.
The mechanics of anchorage in seedlings of sunflower, Helianthus annuus L.   总被引:2,自引:0,他引:2  
Forces applied to plants will subject many of the roots to tension, which must be transferred to the soil via shear if uprooting is to be prevented. The stress distribution will depend on the relative stiffnesses of the earth and root, and the mode of failure will depend on the relative strength of the soil and of the root soil bond. This study of the anchorage of sunflower radicles combined uprooting tests performed by a tensile testing machine with mechanical tests on the roots and soil.
The maximum extraction force increased with length to an asymptotic value and was reached at a very low displacement. Root hairs and soil particles covered the tapered top 20 mm of extracted root, but the lower cylindrical region was bare. The soil was stiffer than the root, so shear stress was initially concentrated at the top of the root, soil strength over the top 20 mm resisting uprooting. Lower regions of the root were stressed later, their sparser root hairs being sheared off, and resist uprooting only by friction. In a further lest upper and lower regions of radicles were uprooted separately. As predicted, the upper region generated much greater resistance to uprooting per unit length, and at much lower displacements than the lower region.
The top of the radicle is well adapted for anchorage, the profuse root hairs and mucigel it produces glueing the root to the soil. The lower regions are thus protected from damage.  相似文献   

8.
The effect of wind sway on the mechanical characteristics ofthe anchorage roots and the stem was investigated in maturewinter wheat (Triticum aestivumL., cv. Hereward). Wheat plantswere field-grown, either supported by a frame, which preventedwind sway, or unsupported (free-standing) and the morphologyand mechanical properties of the stems and the anchorage, ‘coronal’, roots were measured. Wind sway had little influence on either the stem height orear weight of the plants but did affect the mechanical propertiesof the stem. Stems of supported plants were weaker and moreflexible than the stems of free-standing plants. There werealso differences in the anchorage systems between the treatments:supported plants had just under half as many ‘coronal’ anchorage roots as the free-standing plants. This reducedthe anchorage strength of supported plants by a third. These differences in mechanical structure meant that the free-standingplants were more resistant to stem buckling and more resistantto anchorage failure. However, considering the difference inthe need for mechanical strength in plants from the two regimes,these differences were small. This suggests that wheat has inherentmechanical integrity and, as a monocotyledon with no secondarythickening, it differs little structurally between environments. Triticum aestivumL.; thigmomorphogenesis; anchorage; safety factor; mechanical stimulation  相似文献   

9.
The architecture of a tree root system may influence its abilityto withstand uprooting by wind loading. To determine how theroot branching pattern may alter the anchorage efficiency ofa tree, artificial model root systems with different topologiesand branching angles were built. The root systems were embeddedat various depths in wet sand and the pull-out resistance measured.A model to predict the uprooting resistance from the data collectedwas designed, allowing predictions of anchorage strength withregards to architecture. The dominant factors influencing pull-outresistance were the depth and length of roots in the soil. Themost efficient type of branching pattern predicted by the programwas one with an increased number of roots deep in the soil.The optimum branching angle most likely to resist pull-out isa vertical angle of 90° between a lateral and the main axis.The predicted mechanically optimal radial angle between a lateralbranch and its daughter is between 0 and 20°. Values ofbranching angle are compared with those measured in real woodyroot systems of European larch and Sitka spruce. Root architecture; root anchorage; pull-out resistance; windthrow; Picea sitchensis ; Larix decidua  相似文献   

10.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

11.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

12.
Root architecture and tree stability   总被引:17,自引:3,他引:14  
M. P. Coutts 《Plant and Soil》1983,71(1-3):171-188
Summary Root anchorage is discussed with a view to determining the optimum use of root material for enhanced stability. Field observations were made on Sitka spruce root systems while lateral forces were applied to the stem with a winch to pull the tree over. Measurements included the applied force, angles of inclination, soil and root movement, timing of the sound of root breakage using buried microphones, weight and shape of the root-soil plate and damage to the roots.Components of anchorage include the dimensions and mass of the root-soil plate levered from the ground by the displaced stem, and tensile strength of roots and soil beneath the plate; root and soil tensile strength and root/soil resistance on the windward perimeter; and on the lee side the stiffness of the hinge at the fulcrum.Strength properties of roots and soil are reviewed. Models devised for landslip are extended to consider behaviour under tension, of roots singly and in groups, and the concept is developed of a critical rooting density at which root/soil resistance exceeds soil strength, giving rise to the characteric root-soil plate on uprooted trees. The lee side part of the root-soil plate acts as a cantilevered beam and determines the distance of the fulcrum from the tree. Physical laws defining the reduced stiffness of beams as a result of subdivision, indicate the importance of the number/size distribution of roots and weakening effects of branching.On the windward side upward movement of the root-soil plate causes sequential breakage of soil and roots. Under an increasing applied load, failure occurs in parts of the soil-root system before the maximum force for uprooting is achieved. A preliminary approach is made to modelling where the changing contributions of the components of anchorage are allowed for throughout the uprooting process.  相似文献   

13.
The effects of nitrogen and plant growth regulators (stem shorteners)on root and shoot characteristics associated with lodging resistancewere investigated in two winter wheat (Triticum aestivum L.)cultivars of contrasting lodging resistance: the susceptibleGalahad and the resistant Hereward. The morphology and mechanicalstrength of the stems and anchorage systems grown at two levelsof nitrogen and with or without growth regulators were measuredand related to the incidence of lodging recorded in a fieldtrial. In both cultivars high levels of nitrogen increased theheight of the stem, thereby increasing the ‘self-weight’moment transmitted into the ground and weakened both the stemsand the anchorage coronal roots. As a result, the anchoragestrength was also reduced, plants failing in the root systemin simulated lodging tests. Growth regulators, in contrast,had little effect on the bending strength of the shoots androot systems, but reduced plant height so that the over turningmoments generated by the weight of the shoot were less. Therewere also differences between cultivars: Galahad plants hadweaker anchorage due to the smaller number and lower strengthof the coronal roots. The morphological and mechanical measureswere used to calculate a safety factor against both stem androot lodging. Five factors were found to influence the safetyfactors, these were: cultivar type, the type of lodging, therate of nitrogen and growth regulator application, and time,being lowest in Galahad plants at high levels of nitrogen andwithout growth regulators and at grain filling when the earswere heaviest. This was consistent with the observed patternof lodging: root lodging occurred at grain filling and onlyin Galahad which had been treated with high nitrogen rates,most strongly in plants without growth regulators. Key words: Lodging, safety factors, anchorage, ‘self-weight’ moment  相似文献   

14.
The mechanical development of the anchorage system of the taprooted tropical speciesMallotus wrayiKing (Euphorbiaceae) wasinvestigated by pulling over and examining trees with a diameterat breast height (dbh) of 4.2 cm to 14.3 cm. The mode of mechanicalfailure depended upon the size of the tree: thicker trees (dbhapprox.9 cm) failed in the ground with their tap roots pushing intothe soil on the winchward side; in smaller trees (dbhapprox.7 cm) the trunk snapped before anchorage failure; and in verysmall trees (of dbh<6 cm) neither type of failure occurredand the trees returned to their original upright position undamagedafter the test. The anchorage strength of the trees was correlatedwith the second power of trunk diameter rather than with thethird power that theory suggests is optimal because tap rootsdid not show an isometric increase in length or diameter. Thereforeas trees grow larger the ‘factor of safety’ againstanchorage failure falls, making them prone to fail in theirroots. These results suggest that only relatively small treespecies can rely solely on the tap root to prevent uprooting.It may be for this reason that most larger trees develop thicklateral roots.Copyright 1998 Annals of Botany Company Anchorage, tap roots, scaling,Mallotus wrayi, isometric growth, functional development, windthrow, root systems.  相似文献   

15.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

16.
In marly catchments of the French Southern Alps, soils are subjected to harsh water erosion that can result in concentrated flows uprooting small plants. Evaluating and predicting plant resistance to uprooting from simple plant traits is therefore highly important so that the most efficient plant strategy for future restoration of eroded slopes can be defined. Twelve species growing on marly land were studied. For each species, in-situ lateral uprooting tests were conducted and morphological plant traits were measured on small plants at the early stages of their development. The results show that maximum uprooting force was most positively correlated with stem basal diameter. Resistance to uprooting depends on a combination of several traits. Tap root length, the proportion of fine lateral roots and root topology were the best predictors of anchorage strength.  相似文献   

17.
The anchorage mechanics of mature winter-sown oilseed rape (‘Envol’)were investigated by combining a morphological and mechanicalstudy of the root system with anchorage tests on real and modelplants. Oilseed rape plants were anchored by a rigid tap root;the few laterals all emerged below the centre of rotation ofthe root system (approx. 30 mm below the soil surface). Whenplants were pulled over, the tap root bent and the top 30 mmmoved in the soil towards the direction of pull, creating acrevice on the opposite side. The maximum anchorage moment was2.9 ± 0.36 N m. Two main components of anchorage wereidentified: the bending resistance of the tap root and the resistanceof the soil on the near side to compression. The relative importanceof these components was determined by measuring both the bendingresistance of the tap root, and the resistance of metal tubesof varying diameter, inserted to various depths in the soil,to being pulled over. These tests showed that the tap root bendingmoment at failure could account for around 40% of anchoragemoment, while soil resistance could account for around 60%.The model tests on the tubes also help to shed light on theway in which the dimensions of tap roots will influence theiranchorage capability. Copyright 2001 Annals of Botany Company Anchorage, lodging, root bending resistance, mechanical properties, oilseed rape, Brassica napus L  相似文献   

18.
The anchorage systems of Himalayan balsam Impatiens glanduliferaand mature sunflowers Helianthus annuus were investigated bycombining morphological and anatomical study of the root systemswith mechanical tests on roots and with studies in which matureplants were pulled over. The root system of balsam is dominated by large numbers of fleshytapering adventitious roots which point downwards from theirorigin at the wide stem base. Sunflowers, in contrast, havea tapering tap-root from which 20–30 well-branched lateralsemerge, pointing radially outwards and downwards. Roots of eachspecies have contrasting anatomy: those of balsam resemble stems,having a central watery pith and being strengthened peripherallyby lignification of vascular tissue; roots of sunflowers arestrengthened by a solid woody stele. Roots of both species arerigid in tension and, towards the base, in bending. Both species exhibited similar behaviour to that known for treessuch as Sitka spruce; when pulled over they rotated about ahinge leeward of the stem base and a root-soil ball was pulledout of the surrounding soil. Anchorage was resolved into threecomponents which, in order of decreasing magnitude, were (i)the resistance to pulling of the roots on the windward sideof the plant (and, for sunflower, the tap-root); (ii) the resistanceof roots and soil at the leeward hinge to rotation; and (iii)the weight of the root-soil ball. Sunflower had stronger anchoragebut achieved it at a greater cost in terms of the dry mass ofits root system. In each species, the morphology, anatomy and mechanical propertiesof the root system can be related to those of the stem. Thewide stem base of balsam allows large numbers of mechanicallyefficient fleshy roots to be attached whereas in sunflowersa woody tap-root system is necessary to anchor the much narrowerstem. Key words: Impatiens, Helianthus, roots, anchorage  相似文献   

19.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

20.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号