首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
CD36 is a scavenger receptor that has been implicated in malaria pathogenesis as well as innate defense against blood-stage infection. Inflammatory responses to Plasmodium falciparum GPI (pfGPI) anchors are believed to play an important role in innate immune response to malaria. We investigated the role of CD36 in pfGPI-induced MAPK activation and proinflammatory cytokine secretion. Furthermore, we explored the role of this receptor in an experimental model of acute malaria in vivo. We demonstrate that ERK1/2, JNK, p38, and c-Jun became phosphorylated in pfGPI-stimulated macrophages. In contrast, pfGPI-induced phosphorylation of JNK, ERK1/2, and c-Jun was reduced in Cd36(-/-) macrophages and Cd36(-/-) macrophages secreted significantly less TNF-alpha in response to pfGPI than their wild-type counterparts. In addition, we demonstrate a role for CD36 in innate immune response to malaria in vivo. Compared with wild-type mice, Cd36(-/-) mice experienced more severe and fatal malaria when challenged with Plasmodium chabaudi chabaudi AS. Cd36(-/-) mice displayed a combined defect in cytokine induction and parasite clearance with a dysregulated cytokine response to infection, earlier peak parasitemias, higher parasite densities, and higher mortality rates than wild-type mice. These results provide direct evidence that pfGPI induces TNF-alpha secretion in a CD36-dependent manner and support a role for CD36 in modulating host cytokine response and innate control of acute blood-stage malaria infection in vivo.  相似文献   

4.
Adherence of Plasmodium falciparum-infected RBCs (PRBC) to endothelial cells causes PRBC sequestration in cerebral microvessels and is considered to be a major contributor to the pathogenesis of cerebral malaria. Both CD36 and thrombospondin (TSP) are glycoproteins that mediate PRBC adherence to endothelial cells in vitro. Because they are both expressed on the surface of endothelial cells, they probably contribute to PRBC sequestration and vascular occlusion in vivo. By applying affinity labeling of receptor binding sites with purified ligands, we showed for the first time that both CD36 and TSP can bind independently to the PRBC surface and that the PRBC receptor(s) for CD36 and TSP are localized specifically to the electron-dense knob protrusions of the PRBC surface. These findings may help in efforts to develop a malaria vaccine to prevent cerebral malaria.  相似文献   

5.
The cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) in organ microvessels is a key event in the pathogenesis of cerebral malaria and pulmonary edema. Identification of the molecules involved in the interaction between IEs and endothelial cells has been a major goal of research into severe forms of malaria. In contrast, the consequences of cytoadhesion for endothelial cells have been largely ignored. By combining phenotypic selection, cytoadhesion assays and flow cytometry, we demonstrated that the cytoadhesion of CSA-binding IEs inhibited the cytoadhesion of CD36-binding IEs. We identified CD44 as a signal receptor for CSA-binding IEs cytoadhesion, and demonstrated that the signal was transduced to CD36 through a pathway involving the Src-kinase family and MEK. CD36-mediated cytoadhesion was modulated independently of changes in CD36 expression. These results provide the first evidence that some IEs can downregulate the cytoadhesion of IEs of another phenotype, by modifying endothelial cells via a signaling pathway relating CD44 to CD36. Mimicking this phenomenon may constitute an interesting therapeutic strategy for inhibiting the adhesion of CD36-binding IEs -- the most abundant phenotype among field isolates -- and promoting their degradation in the spleen.  相似文献   

6.
The sequestration of Plasmodium falciparum-infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration.  相似文献   

7.
The adherence of Plasmodium falciparum-infected RBC (IRBC) to postcapillary venular endothelium is an important determinant of the pathogenesis of severe malaria complications. Cytoadherence of IRBC to endothelial cells involves specific receptor/ligand interactions. The glycoprotein CD36 expressed on endothelial cells is the major receptor involved in this interaction. Treatment of CD36-expressing cells with reducing agents, such as DTT and N-acetylcysteine, was followed by CD36 conformational change monitorable by the appearance of the Mo91 mAb epitope. Only a fraction of the surface expressed CD36 molecules became Mo91 positive, suggesting the presence of two subpopulations of molecules with different sensitivities to reduction. The Mo91 epitope has been localized on a peptide (residues 260-279) of the C-terminal, cysteine-rich region of CD36. Treatment with reducing agents inhibited the CD36-dependent cytoadherence of IRBC to CD36-expressing cells and dissolved pre-existent CD36-mediated IRBC/CD36-expressing cell aggregates. CD36 reduction did not impair the functionality of CD36, since the reactivity of other anti-CD36 mAbs as well as the binding of oxidized low density lipoprotein, a CD36 ligand, were maintained. The modifications induced by reduction were reversible. After 14 h CD36 was reoxidized, the cells did not express the Mo91 epitope, and cytoadherence to IRBC was restored. The results indicate that IRBCs bind only to a redox-modulated fraction of CD36 molecules expressed on the cell surface. The present data indicate the therapeutic potential of reducing agents, such as the nontoxic drug N-acetylcysteine, to prevent or treat malaria complications due to IRBC cytoadhesion.  相似文献   

8.
Molecular mechanisms of Plasmodium falciparum placental adhesion   总被引:2,自引:0,他引:2  
In natural Plasmodium falciparum infections, parasitized erythrocytes (PEs) circulate in the peripheral blood for a period corresponding roughly to the first part of the erythrocytic life cycle (ring stage). Later, in blood-stage development, parasite-encoded adhesion molecules are inserted into the erythrocyte membrane, preventing the circulation of the PEs. The principal molecule mediating PE adhesion is P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var gene family. The population of parasites is subject to clonal antigenic variation through changes in var expression, and a single PfEMP1 variant is expressed at the PE surface in a mutually exclusive manner. In addition to its role in immune evasion, switches in PfEMP1 expression may be associated with fundamental changes in parasite tissue tropism in malaria patients. A switch from CD36 binding to chondroitin sulphate A (CSA) binding may lead to extensive sequestration of PEs in placenta syncytiotrophoblasts. This is probably a key event in malaria pathogenesis during pregnancy. The CSA-binding phenotype of mature PEs is linked to another distinct adhesive phenotype: the recently described CSA-independent cytoadhesion of ring-stage PEs. Thus, a subpopulation of PEs that sequentially displays these two different phenotypes may bind to an individual endothelial cell or syncytiotrophoblast throughout the asexual blood-stage cycle. This suggests that non-circulating (cryptic) parasite subpopulations are present in malaria patients.  相似文献   

9.
Li A  Lim TS  Shi H  Yin J  Tan SJ  Li Z  Low BC  Tan KS  Lim CT 《PloS one》2011,6(3):e16929
Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the 'holder' for providing stable binding.  相似文献   

10.
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.  相似文献   

11.
Oxidized low density lipoprotein (LDL) (Ox-LDL) plays an important role in the pathogenesis of atherosclerosis. Oxidized LDL is taken up by macrophages via scavenger receptors. CD36 is an 88 kDa glycoprotein expressed on platelets, monocyte-macrophages, microvascular endothelial cells, adipose tissue, skeletal muscles and heart. We found patients with CD36 deficiency and identified several mutations in the CD36 gene. We also reported that CD36-deficient macrophages showed a 50% reduction in the binding of Ox-LDL, suggesting that CD36 is one of the major receptors for Ox-LDL. CD36 was expressed on macrophages in the atherosclerotic lesions of human aorta and coronary arteries especially on foamed macrophages. The distribution of CD36 expression was slightly different from that of scavenger receptor class A types I and II. The expression of CD36 on macrophages was up-regulated by Ox-LDL and down-regulated by interferon gamma. Since CD36 is a transporter of long-chain fatty acids (LCFA), CD36-deficient patients showed a defect in the uptake of an LCFA analog, BMIPP, by the heart. Furthermore, the secretion of IL-1beta and TNF-alpha from monocyte-derived macrophages induced by Ox-LDL was markedly reduced and the activation of NF-kappaB was attenuated in CD36-deficient subjects compared with controls, suggesting that CD36-mediated signaling is also impaired in CD36 deficiency.To elucidate the roles of CD36 in vivo, we characterized the clinical profile of CD36-deficient patients. Most of them were accompanied by hyperlipidemia (mainly hypertriglyceridemia), increased remnant lipoproteins and mild elevation of fasting plasma glucose level and blood pressure. Glucose clamp technique revealed mean whole body glucose uptake was reduced in CD36-deficient patients, indicating the presence of insulin resistance. The frequency of CD36 deficiency was higher in patients with coronary heart disease (CHD) than in control subjects. Taken together, CD36 deficiency is accompanied by (1) hyperlipidemia and increased remnant lipoproteins, (2) impaired glucose metabolism based upon insulin resistance, and (3) mild hypertension, and comprises one of the genetic backgrounds of the metabolic syndrome, leading to the development of CHD.  相似文献   

12.
The vitronectin receptor, alphavbeta3 integrin, plays an important role in tumor cell invasion, angiogenesis, and phagocytosis of apoptotic cells. CD47, a member of the multispan transmembrane receptor family, physically and functionally associates with vitronectin receptor (VnR). Although vitronectin (Vn) is not a ligand of CD47, anti-CD47 and beta3 mAbs suppress Vn, but not fibronectin (Fn) binding and function. Here, we show that anti-CD47, anti-beta3 mAb and Vn, but not Fn, inhibit sCD23-mediated proinflammatory function (TNF-alpha, IL-12, and IFN-gamma release). Surprisingly, anti-CD47 and beta3 mAbs do not block sCD23 binding to alphav+beta3+ T cell lines, whereas Vn and an alphav mAb (clone AMF7) do inhibit sCD23 binding, suggesting the VnR complex may be a functional receptor for sCD23. sCD23 directly binds alphav+beta3+/CD47(-) cell lines, but coexpression of CD47 increases binding. Moreover, sCD23 binds purified alphav protein and a single human alphav chain CHO transfectant. We conclude that the VnR and its associated CD47 molecule may function as a novel receptor for sCD23 to mediate its proinflammatory activity and, as such, may be involved in the inflammatory process of the immune response.  相似文献   

13.

Introduction

Severe malaria has been attributed partly to the sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature of vital host organs. Identification of P. falciparum cytoadherence phenotypes that are associated with severe malaria may lead to the development of novel strategies against life-threatening malaria.

Methods and Findings

Forty-six P. falciparum isolates from Mozambican children under 5 years of age with severe malaria (cases) were examined and compared to 46 isolates from sex and age matched Mozambican children with uncomplicated malaria (controls). Cytoadherence properties such as platelet-mediated clumping, rosetting and adhesion to purified receptors (CD36, ICAM1 and gC1qR), were compared between these matched pairs by non-parametric tests. The most common clinical presentation associated with severe malaria was prostration. Compared to matched controls, prevalence of platelet-mediated clumping was higher in cases (P = .019), in children presenting with prostration (P = .049) and in children with severe anaemia (P = .025). Prevalence of rosetting and gC1qR adhesion were also higher in isolates from cases with severe anemia and multiple seizures, respectively (P = .045 in both cases), than in controls.

Conclusions

These data indicate a role for platelet-mediated clumping, rosetting and adhesion to gC1qR in the pathogenesis of severe malaria. Inhibition of these cytoadherence phenotypes may reduce the occurrence or improve the prognosis of severe malaria outcomes.  相似文献   

14.
Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar-capillary membrane barrier-the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36(-/-) mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality.  相似文献   

15.
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases.  相似文献   

16.
The macrophage scavenger receptor CD36 plays an important role in binding and uptake of oxidized forms of low-density lipoprotein (LDL), foam cell formation, and lesion development during atherosclerosis. The structural basis of CD36-lipoprotein ligand recognition is an area of intense interest. In a companion article we reported the characterization of a structurally conserved family of oxidized choline glycerophospholipids (oxPC(CD36)) that serve as novel high affinity ligands for cells stably transfected with CD36, mediating recognition of multiple oxidized forms of LDL (Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P., Shan, L., Gugiu, B., Fox, P. L., Hoff, H. F., Salomon, R. G., and Hazen, S. L. (July 8, 2002) J. Biol. Chem. 277, 10.1074/jbc.M203318200). Here we use macrophages from wild-type and CD36 null mice to demonstrate that CD36 is the major receptor on macrophages mediating recognition of oxPC(CD36) species when presented (+/- plasma) in pure form, within PC bilayers in small unilamellar vesicles, and within liposomes generated from lipid extracts of native LDL. We also show that oxPC(CD36) promote CD36-dependent recognition when present at only a few molecules per particle, resulting in macrophage binding, uptake, metabolism, cholesterol accumulation, and foam cell formation. Finally, using high performance liquid chromatography with on-line electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS), we demonstrate that oxPC(CD36) are generated in vivo and are enriched in atherosclerotic lesions. Collectively, our data suggest that formation of this novel family of oxidized phospholipids participates in CD36-mediated recognition of oxidized lipoproteins and foam cell formation in vivo.  相似文献   

17.
18.
The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.  相似文献   

19.
The macrophage scavenger receptor CD36 plays an important role in the uptake of oxidized forms of low density lipoprotein (LDL) and contributes to lesion development in murine models of atherosclerosis. However, the structural basis of CD36 lipoprotein ligand recognition is unknown. We now identify a novel class of oxidized phospholipids that serve as high affinity ligands for CD36 and mediate recognition of oxidized forms of LDL by CD36 on macrophages. Small unilamellar vesicles of homogeneous phosphatidylcholine (PC) molecular species were oxidized by the myeloperoxidase (MPO)-H(2)O(2)-NO(2)(-) system, and products were separated by sequential LC/ESI/MS/MS. In parallel, fractions were tested for their ability to bind to CD36. Four major structurally related phospholipids with CD36 binding activity were identified from oxidized 1-palmitoyl-2-arachidonyl-PC, and four corresponding structural analogs with CD36 binding activity were identified from oxidized 1-palmitoyl-2-linoleoyl-PC. Each was then synthetically prepared, its structure confirmed by multinuclear NMR and high resolution mass spectrometry, and shown to possess identical CD36 binding activity and LC/ESI/MS/MS characteristics in both native and derivatized forms. Based upon the structures of the active compounds identified, and structure-function studies with a variety of synthetic analogs, we conclude that the structural characteristics required for high affinity binding of oxidized PC species to CD36 are a phospholipid with an sn-2 acyl group that incorporates a terminal gamma-hydroxy(or oxo)-alpha,beta-unsaturated carbonyl (oxPC(CD36)). LC/ESI/MS/MS studies demonstrate that oxPC(CD36) are formed during LDL oxidation by multiple distinct pathways. Formation of this novel class of oxidized PC species contributes to CD36-mediated recognition of LDL oxidized by MPO and other biologically relevant mechanisms. The present results offer structural insights into the molecular patterns recognized by the scavenger receptor CD36 and provide a platform for the development of potential therapeutic inhibitory agents.  相似文献   

20.
目的:探讨氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)对巨噬细胞源性泡沫细胞吞噬功能和炎症相关因子分泌功能的影响。方法:利用佛波酯(phorbol ester,PMA)诱导THP-1细胞分化形成巨噬细胞,之后采用ox-LDL处理48小时后,诱导其形成泡沫细胞。利用中性红吞噬实验,分析泡沫细胞形成前后吞噬功能的变化;通过ELISA法,检测细胞培养上清中肿瘤坏死因子α(tumor necrosis factorα,TNF-α)含量,观察ox-LDL对THP-1巨噬细胞功能的影响。结果:细胞形态学结果表明,我们成功利用ox-LDL诱导THP-1巨噬细胞形成泡沫细胞;进一步发现ox-LDL诱导THP-1巨噬细胞表面的清道夫受体CD36表达升高,并促进细胞吞噬功能增加,进一步促进细胞内胆固醇含量显著升高(P0.05);同时,ox-LDL能够刺激巨噬细胞大量分泌TNF-α(P0.05)。结论:ox-LDL通过增强清道夫受体CD36表达,提高巨噬细胞的吞噬功能,引起大量胆固醇聚集,产生细胞毒性损伤,并促进TNF-α炎性因子的大量分泌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号