首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian basic helix-loop-helix proteins of the achaete-scute family are proneural factors that, in addition to the central nervous system, are required for the differentiation of peripheral neurons and sensory cells, derivatives of the neural crest and placodal ectoderm. Here, in identifying the molecular nature of the pia mutation, we investigate the role of the zebrafish achaete-scute homologue ascl1a during development of the adenohypophysis, an endocrine derivative of the placodal ectoderm. Similar to mutants deficient in Fgf3 signaling from the adjacent ventral diencepahalon, pia mutants display failure of endocrine differentiation of all adenohypophyseal cell types. Shortly after the failed first phase of cell differentiation, the adenohypophysis of pia mutants displays a transient phase of cell death, which affects most, but not all adenohypophyseal cells. Surviving cells form a smaller pituitary rudiment, lack expression of specific adenohypophyseal marker genes (pit1, neurod), while expressing others (lim3, pitx3), and display an ultrastructure reminiscent of precursor cells. During normal development, ascl1a is expressed in the adenohypophysis and the adjacent diencephalon, the source of Fgf3 signals. However, chimera analyses show that ascl1a is required cell-autonomously in adenohypophyseal cells themselves. In fgf3 mutants, adenohypophyseal expression of ascl1a is absent, while implantation of Fgf3-soaked beads into pia mutants enhances ascl1a, but fails to rescue pit1 expression. Together, this suggests that Ascl1a might act downstream of diencephalic Fgf3 signaling to mediate some of the effects of Fgf3 on the developing adenohypophysis.  相似文献   

2.
Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of pituitary formation in the two vertebrate classes.  相似文献   

3.
4.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   

5.
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.  相似文献   

6.
Sonic hedgehog (Shh) is a key signal in the specification of ventral cell identities along the length of the developing vertebrate neural tube. In the presumptive hindbrain and spinal cord, dorsal development is largely Shh independent. By contrast, we show that Shh is required for cyclin D1 expression and the subsequent growth of both ventral and dorsal regions of the diencephalon and midbrain in early somite-stage mouse embryos. We propose that a Shh-dependent signaling relay regulates proliferation and survival of dorsal cell populations in the diencephalon and midbrain. We present evidence that Fgf15 shows Shh-dependent expression in the diencephalon and may participate in this interaction, at least in part, by regulating the ability of dorsal neural precursors to respond to dorsally secreted Wnt mitogens.  相似文献   

7.
Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke’s pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.  相似文献   

8.
Members of the fibroblast growth factor (Fgf) family are important signaling molecules in several inductive and patterning processes, and act as brain organizer-derived signals during formation of the early vertebrate nervous system. We isolated a new member of the Fgf8/17/18 subgroup of Fgfs from the zebrafish, and studied its expression and function during somitogenesis, optic stalk and midbrain-hindbrain boundary (MHB) development. In spite of a slightly higher aminoacid similarity to Fgf8, expression analysis and mapping to a chromosome stretch that is syntenic with mammalian chromosomes shows that this gene is orthologous to mammalian Fgf17. These data provide a further example of conserved chromosomal organization between zebrafish and mammalian genomes. Using an mRNA injection assay, we show that fgf17 can act similar to fgf8 during gastrulation, when fgf17 is not normally expressed. Direct comparison of the expression patterns of fgf17 and fgf8 suggest however a possible cooperation of these Fgfs at later stages in several tissues requiring Fgf signaling. Analysis of zebrafish MHB mutants demonstrates a gene-dosage dependent requirement of fgf17 expression for the no isthmus// pax2.1 gene, showing that no isthmus/pax2.1 functions upstream of fgf17 at the MHB in a haplo-insufficient manner, similar to what has been reported for mammalian pax2 mutants. In contrast, only maintenance of fgf17 expression is disturbed at the MHB of acerebellar/fgf8 mutants. Consistent with a requirement for fgf8 function, implantation of FGF8-soaked beads induces fgf17 expression, and expression is upregulated in aussicht mutants, which display upregulation of the Fgf8 signaling pathway. Taken together, our results argue that Fgf8 and Fgf17 act as hierarchically organized signaling molecules during development of the MHB organizer and possibly other organizers in the developing nervous system.  相似文献   

9.
Developmental patterning and growth of the vertebrate digestive and respiratory tracts requires interactions between the epithelial endoderm and adjacent mesoderm. The esophagus is a specialized structure that connects the digestive and respiratory systems and its normal development is critical for both. Shh signaling from the epithelium regulates related aspects of mammalian and zebrafish digestive organ development and has a prominent effect on esophageal morphogenesis. The mechanisms underlying esophageal malformations, however, are poorly understood. Here, we show that zebrafish Ihha signaling from the epithelium acting in parallel, but independently of Shh, controls epithelial and mesenchymal cell proliferation and differentiation of smooth muscles and neurons in the gut and swimbladder. In zebrafish ihha mutants, the esophageal and swimbladder epithelium is dysmorphic, and expression of fgf10 in adjacent mesenchymal cells is affected. Analysis of the development of the esophagus and swimbladder in fgf10 mutant daedalus (dae) and compound dae/ihha mutants shows that the Ihha–Fgf10 regulatory interaction is realized through a signaling feedback loop between the Ihha-expressing epithelium and Fgf10-expressing mesenchyme. Disruption of this loop further affects the esophageal and swimbladder epithelium in ihha mutants, and Ihha acts in parallel to but independently of Shha in this process. These findings contribute to the understanding of epithelial–mesenchymal interactions and highlight an interaction between Hh and Fgf signaling pathways during esophagus and swimbladder development.  相似文献   

10.
11.
12.
Complex spatiotemporal expression patterns of fgf3 and fgf8 within the developing zebrafish forebrain suggest their involvement in its regionalisation and early development. These factors have unique and combinatorial roles during development of more posterior brain regions, and here we report similar findings for the developing forebrain. We show that Fgf8 and Fgf3 regulate different aspects of telencephalic development, and that Fgf3 alone is required for the expression of several telencephalic markers. Within the diencephalon, Fgf3 and Fgf8 act synergistically to pattern the ventral thalamus, and are implicated in the regulation of optic stalk formation, whereas loss of Fgf3 alone results in defects in ZLI development. Forebrain commissure formation was abnormal in the absence of either Fgf3 or Fgf8; however, most severe defects were observed in the absence of both. Defects were observed in patterning of both the midline territory, within which the commissures normally form, and neuronal populations, whose axons comprise the commissures. Analysis of embryos treated with an FGFR inhibitor suggests that continuous FGF signalling is required from gastrulation stages for normal forebrain patterning, and identifies additional requirements for FGFR activity.  相似文献   

13.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation.  相似文献   

14.
The morphogenesis of the pituitary gland and the chronological appearance of adenohypophyseal cells were investigated for the first time in the Somalian cave fish Phreatichthys andruzzii by immunocytochemistry. The adult adenohypophysis contained: a rostral pars distalis, with prolactin (PRL) cells arranged in follicles and adrenocorticotropic (ACTH) cells, a proximal pars distalis with somatotropic (GH), β‐thyrotropic (TSH), β‐gonadotropic type I (FSH) and type II (LH) cells and a pars intermedia with α‐somatolactin (SL), α‐melanotropic (MSH) and β‐endorphin (END) cells. All regions were deeply penetrated by neurohypophyseal branches. At hatching (24 h post‐fertilization) the pituitary was an oval cell mass, close to the ventral margin of diencephalon. The first immunoreactive cells appeared as follows: PRL at 0·5 days after hatching (dah), GH and SL at 1·5 dah, END at 2 dah, TSH, ACTH and MSH at 2·5 dah, FSH at 28 dah and LH at 90 dah. The neurohypophysis appeared at 5 dah and branched extensively inside the adenohypophysis at 130 dah, but there was no boundary between rostral pars distalis and proximal pars distalis at this stage. The potential indices of prolactin and growth hormone production increased until 28 and 60 dah, respectively. The potential index of growth hormone production correlated positively with total length. Activity of PRL and GH cells, measured as ratio of cell area to nucleus area, was significantly higher in juveniles than in larvae.  相似文献   

15.
16.
17.
Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.  相似文献   

18.
19.
Hedgehog signaling is known to regulate tissue morphogenesis and cell differentiation in a dose-dependent manner. Loss of Indian hedgehog (Ihh) results in reduction in pancreas size, indicating a requirement for hedgehog signaling during pancreas development. By contrast, ectopic expression of sonic hedgehog (Shh) inhibits pancreatic marker expression and results in transformation of pancreatic mesenchyme into duodenal mesoderm. These observations suggest that hedgehog signaling activity has to be regulated tightly to ensure proper pancreas development. We have analyzed the function of two hedgehog inhibitors, Hhip and patched 1 (Ptch), during pancreas formation. Our results indicated that loss of Hhip results in increased hedgehog signaling within the pancreas anlage. Pancreas morphogenesis, islet formation and endocrine cell proliferation is impaired in Hhip mutant embryos. Additional loss of one Ptch allele in Hhip-/-Ptch+/- embryos further impairs pancreatic growth and endodermal cell differentiation. These results demonstrate combined requirements for Hhip and Ptch during pancreas development and point to a dose-dependent response to hedgehog signaling within pancreatic tissue. Reduction of Fgf10 expression in Hhip homozygous mutants suggests that at least some of the observed phenotypes result from hedgehog-mediated inhibition of Fgf signaling at early stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号